Porous Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons

Zhi Liu , Feifan Xu , Zhijie Zhao , Yuhua He , Hongxing Zhang , Guangtian Zou , Yangxue Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1035 -1040.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1035 -1040. DOI: 10.1007/s40242-018-8161-7
Article

Porous Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons

Author information +
History +
PDF

Abstract

The design and synthesis of porous organic polymers for the potential application in chemical sensors re-mains a huge challenge nowadays. Herein, a porous organic polymer possessing tetrazole groups(TTZ-3) was synthe-sized via simple Schiff base chemical reaction. Thermogravimetric analysis(TGA), Fourier transform infrared spec-trometer(FTIR), solid-state 13C cross polarization/magic angle spinning nuclear magnetic resonance(CP/MAS NMR), transmission electron microscopies(TEM) and field-scanning electron microscopies(FE-SEM) were adopted to characterize the structure and morphology in detail. Significantly, the formed polymers exhibited special detection of unsaturated hydrocarbons through fluorescence enhancement based on photoactivatable 1,3-dipolar cycloaddition reactions. Furthermore, the reaction activity of different unsaturated hydrocarbons towards the polymers was investigated. This work highlights the great potential of porous organic polymers as chemical sensors in realizing environmental pollution monitoring and reducing the incidence of disease, such as chronic obstructive pulmonary disease.

Keywords

Chronic obstructive pulmonary disease / Porous organic polymer / 1,3-Dipolar cycloaddition / Air pollution / Unsaturated hydrocarbons detection

Cite this article

Download citation ▾
Zhi Liu, Feifan Xu, Zhijie Zhao, Yuhua He, Hongxing Zhang, Guangtian Zou, Yangxue Li. Porous Organic Polymer Nanoparticles for Sensing of Unsaturated Hydrocarbons. Chemical Research in Chinese Universities, 2018, 34(6): 1035-1040 DOI:10.1007/s40242-018-8161-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lopez A. D., Shibuya K., Rao C., Mathers C. D., Hansell A. L., Held L. S., Schmid V., Buist S. Eur. Respir. J., 2006, 27: 397.

[2]

Saltveit M. E. Postharvest Biol. Technol., 1999, 15: 279.

[3]

Kader A. A. Hort Science, 2003, 38: 1004.

[4]

Deng H. X., Grunder S., Cordova K. E., Valente C., Furukawa H., Hmadeh M., Gandara F., Whalley A. C., Liu Z., Asahina S., Kazu-mori H., O’Keeffe M., Terasaki O., Stoddart J. F., Yaghi O. M. Science, 2012, 336: 1018.

[5]

Xiang S. C., He Y. B., Zhang Z. J., Wu H., Zhou W., Krishna R., Chen B. L. Nat. Commun., 2012, 3: 954.

[6]

Zhou H. C., Long J. R., Yaghi O. M. Chem. Rev., 2012, 112: 673.

[7]

Shan L., Wang L., Fan Y., Shen L. L., Wang S. Y., Xu J. N. Chem. Res. Chinese Universities, 2017, 33(3): 479.

[8]

Zhao W. X., Hou Z. S., Yao Z. Q., Zhuang X. D., Zhang F., Feng X. L. Polym. Chem., 2015, 6: 7171.

[9]

Meng X. B., Gao Q. M. Chem. J. Chinese Universities, 2014, 35(8): 1715.

[10]

Liu L. L., Tai X. S., Yu G. L., Guo H. M., Meng Q. G. Chem. Res. Chinese Universities, 2016, 32(3): 443.

[11]

Liu J., Chen Q., Sun Y. N., Xu M. Y., Liu W., Han B. H. RSC Adv., 2016, 6: 48543.

[12]

Yuan Y. C., Sun B., Cao A. M., Wang D., Wan L. J. Chem. Commun., 2018, 54: 5976.

[13]

Chen L., Furukawa K., Gao J., Nagai A., Nakamura T., Dong Y., Jiang D. J. Am. Chem. Soc., 2014, 136: 9806.

[14]

Sun Q., Aguila B., Ma S. Q. Mater. Chem. Front., 2017, 1: 1310.

[15]

Lu W. J., Huang S. Z., Miao L., Liu M. X., Zhu D. Z., Li L. C., Duan H., Xua Z. J., Gan L. H. Chin. Chem. Lett., 2017, 28: 1324.

[16]

Miao L., Zhu D. Z., Zhao Y. H., Liu M. X., Duan H., Xiong W., Zhu Q. J., Li L. C., Lv Y. K., Gan L. H. Micropor. Mesopor., Mat., 2017, 253: 1.

[17]

Liu M. X., Qian J. S., Zhao Y. H., Zhu D. Z., Gan L. H., Chen L. W. J. Mater. Chem. A, 2015, 3: 11517.

[18]

Uribe-Romo F. J., Hunt J. R., Furukawa H., Klock C., O’Keeffe M., Yaghi O.M. J. Am. Chem. Soc., 2009, 131: 4570.

[19]

Das S., Heasman P., Ben T., Qiu S. L. Chem. Rev., 2017, 117: 1515.

[20]

Segura J. L., Mancheňoa M. J., Zamora F. Chem. Soc. Rev., 2016, 45: 5635.

[21]

Uribe-Romo F. J., Doonan C. J., Furukawa H., Oisaki K., Yaghi O. M. J. Am. Chem. Soc., 2011, 133: 11478.

[22]

Butler R. N., Katritzky A. R., Rees C. W., Scriven E. F. V. Compre-hensive Heterocyclic Chemistry, 1996.

[23]

Bond A. D., Fleming A., Kelleher F., McGinley J., Prajapati V. Tet-rahedron, 2006, 62: 9577.

[24]

Herr R. J. Bioorg. Med. Chem., 2002, 10: 3379.

[25]

Wang Y., Song W., Hu W. J., Lin Q. Angew. Chem. Int. Ed., 2009, 48: 5330.

[26]

Wang Y., Hu W. J., Song W., Lim R. K. V., Lin Q. Org. Lett., 2008, 10: 3725.

[27]

Hiskey M., Chavez D. E., Naud D. L., Son S. F., Berghout H. L., Bome C. A. Proc. Int. Pyrotech. Semin., 2000, 27: 3.

[28]

Gundugola A. S., Chandra K. L., Perchellet E. M., Waters A. M., Perchellet J. P. H., Rayat S. Bioorg. Med. Chem. Lett., 2010, 20: 3920.

[29]

Srihari P., Dutta P., Rao R. S., Yadav J. S., Chandrasekhar S., Thom-bare P., Mohapatra J., Chatterjee A., Jain M. R. Bioorg. Med. Chem. Lett., 2009, 19: 5569.

[30]

Li Y., Sun Z., Sun T., Chen L., Xie Z., Huang Y., Jing X. RSC Adv., 2013, 3: 21302.

[31]

Laliberté D., Maris T., Wuest J. D. J. Org. Chem., 2004, 69: 1776.

[32]

Li Y., Gao L. X., Han F. S. Chem. Commun., 2012, 48: 2719.

[33]

Nguyen V., Grunwald M. J. Am. Chem. Soc., 2018, 140: 3306.

[34]

Cui Y. Z., Du J. F., Liu Y. C., Yu Y., Wang S., Pang H., Liang Z. Q., Yu J. H. Polym. Chem., 2018, 9: 2643.

[35]

Song W., Wang Y., Qu J., Madden M. M., Lin Q. Angew. Chem. Int. Ed., 2008, 47: 2832.

[36]

Song W., Wang Y., Qu J., Lin Q. J. Am. Chem. Soc., 2008, 130: 9654.

[37]

Zheng S. L., Wang Y., Yu Z., Lin Q., Coppens P. J. Am. Chem. Soc., 2009, 131: 18036.

[38]

Tasdelen M. A., Yagci Y. Angew. Chem. Int. Ed., 2013, 52: 5930.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/