Copper-cobalt Bimetallic Oxides-doped Alumina Hollow Spheres: A Highly Efficient Catalyst for Epoxidation of Styrene

Baitao Li , Jing Huang , Xiujun Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 125 -132.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 125 -132. DOI: 10.1007/s40242-018-8158-2
Article

Copper-cobalt Bimetallic Oxides-doped Alumina Hollow Spheres: A Highly Efficient Catalyst for Epoxidation of Styrene

Author information +
History +
PDF

Abstract

Copper-cobalt bimetallic oxides-doped alumina hollow spheres(CuCo/AHS) were fabricated through the sacrificial carbonaceous template strategy. The dependence of the physicochemical properties and morphologies of CuCo/AHS on the composition of copper and cobalt in Cu xCo y/AHS(x/y=9/1, 7/3, 5/5, and 3/7) were characterized by X-ray powder diffraction, nitrogen physisorption, atomic adsorption spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Among these catalysts, Cu7Co3/AHS catalyst exhibited perfect hollow sphere structure, thin wall, and big pore size. The calcined catalysts were examined for the epoxidation of styrene with tert-butyl hydroperoxide as oxidant. Compared with the monometallic counter-parts(Cu/AHS and Co/AHS) and other Cu xCo y/AHS catalysts, Cu7Co3/AHS catalyst showed higher performance, yielding a styrene conversion of 64.6% with 93.0% selectivity toward styrene oxide. In addition, the strong interaction of Cu2+ or Co2+ with AHS ensured the good stability after four consecutive reactions.

Keywords

Alumina hollow sphere / Styrene epoxidation / Cu-Co bimetallic catalyst / Styrene oxide

Cite this article

Download citation ▾
Baitao Li, Jing Huang, Xiujun Wang. Copper-cobalt Bimetallic Oxides-doped Alumina Hollow Spheres: A Highly Efficient Catalyst for Epoxidation of Styrene. Chemical Research in Chinese Universities, 2019, 35(1): 125-132 DOI:10.1007/s40242-018-8158-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gopalaiah K. Chem. Rev., 2013, 113(5): 3248.

[2]

Bregante D. T., Flaherty D. W. J.^Am. Chem. Soc., 2017, 139(20): 6888.

[3]

Huang J., Luo Y., Cai J. Chin.^J. Catal., 2016, 37(9): 1539.

[4]

Mirzaee M., Bahramian B., Mirebrahimi M. Chin.^J. Catal., 2016, 37(8): 1263.

[5]

Mello R., Alcalde-Aragonés A., González Núñez M. E., Asensio G. J. Org. Chem., 2012, 77(15): 6409.

[6]

De Faveri G., Ilyashenko G., Watkinson M. Chem. Soc. Rev., 2011, 40(3): 1722.

[7]

Grigoropoulou G., Clark J. H., Elings J. A. Green Chem., 2003, 5(1): 1.

[8]

Kuhn F. E., Groarke M., Bencze, Herdtweck E., Prazeres A., San-tos A. M., Calhorda M. J., Romão C. C., Goncalves I. S., Lopes A. D., Pillinger M. Chem. Eur. J., 2002, 8(10): 2370.

[9]

Li Y., Zhao S., Hu Q., Gao Z., Liu Y., Zhang J., Qin Y. Catal. Sci. Technol., 2017, 7(10): 2032.

[10]

Yang F., Wang B., Zhou S., Long S., Liu X., Kong Y. Microporous Mesoporous Mater., 2017, 246: 215.

[11]

Li B., Luo X., Huang J., Wang X., Liang Z. Chin.^J. Catal., 2017, 38(3): 518.

[12]

Yin D., Qin L., Liu J., Li C., Jin Y. J. Mol. Catal. A: Chem., 2005, 240: 40.

[13]

Passos A. R., Martins L., Pulcinelli S. H., Santilli C. V. J. Sol-Gel Sci. Technol., 2012, 63(2): 242.

[14]

Morris S. M., Fulvio P. F., Jaroniec M. J.^Am. Chem. Soc., 2008, 130(45): 15210.

[15]

Tian J., Tian P., Pang H., Ning G., Bogale R. F., Cheng H., Shen S. Microporous Mesoporous Mater., 2016, 223: 27.

[16]

Hu J., Chen M., Fang X., Wu L. Chem. Soc. Rev., 2011, 40(11): 5472.

[17]

Sun X., Liu J., Li Y. Chem. Eur. J., 2006, 12(7): 2039.

[18]

Liu Y., Yang P., Wang W., Dong H., Lin J. Cryst. Eng. Comm., 2010, 12(11): 3717.

[19]

Sun X., Li Y. Angew. Chem. Int. Ed., 2004, 43(29): 3827.

[20]

Braga T. P., Gomes E. C. C., de Sousa A. F., Carreño N. L. V., Long-hinotti E., Valentini A. J. Non-Cryst. Solids, 2009.

[21]

Fang X., Liu Z., Hsieh M. F., Chen M., Liu P., Chen C., Zheng N. ACS Nano, 2012, 6(5): 4434.

[22]

Li Y., Shi J. Adv. Mater., 2014, 26(20): 3176.

[23]

Xu R., Wang D., Zhang J., Li Y. Chem. Asian J., 2006, 1(6): 888.

[24]

Chimentao R. J., Medina F., Sueiras J. E., Fierro J. L. G., Cesteros Y., Salagre P. J. Mater. Sci., 2007, 42(10): 3307.

[25]

Noh J. H., Patala R., Meijboom R. Appl. Catal. A: Gen., 2016, 514: 253.

[26]

Yao Y., Zhang X., Peng J., Yang Q. Chem. Commun., 2015, 51(18): 3750.

[27]

Liu Y., Tsunoyama H., Akita T., Tsukuda T. Chem. Commun., 2010, 46(4): 550.

[28]

Hu R., Yang P., Pan Y., Li Y., He Y., Feng J., Li D. Dalton Trans., 2017, 46(39): 13463.

[29]

Vesborg P. C. K., Jaramillo T. F. RSC Adv., 2012, 2(21): 7933.

[30]

Lashanizadegan M., Mousavi F. Reac. Kinet. Mech. Cat., 2015, 116(2): 421.

[31]

Wang H. K., Yi C. Y., Tian L., Wang W. J., Fang J., Zhao J. H., Shen W. G. J. Nanomater., 2012, 2012: 453915.

[32]

Li B., Luo X., Zhu Y., Wang X. Appl. Surf. Sci., 2015, 359: 609.

[33]

Tong J., Cai X., Wang H., Zhang Q. Mater. Res. Bull., 2014, 55: 205.

[34]

Jin X., Qian X., Li B. J. Nanosci. Nanotechnol., 2014, 14(9): 7234.

[35]

Tang Q., Zhang Q., Wu H., Wang Y. J. Catal., 2005, 230(2): 384.

[36]

Shi Z. Q., Jiao L. X., Sun J., Chen Z. B., Chen Y. Z., Zhu X. H., Zhou J. H., Zhou X. C., Li X. Z., Li R. RSC Adv., 2014, 4(1): 47.

[37]

Titirici M. M., Antonietti M., Thomas A. Chem. Mater., 2006, 18(16): 3808.

[38]

Sun J., Xing C., Xu H., Meng F., Yoneyama Y., Tsubaki N. J. Mater. Chem. A, 2013, 1(18): 5670.

[39]

Li B., Jin X., Zhu Y., Chen L., Zhang Z., Wang X. Inorg. Chim. Acta, 2014, 419: 66.

[40]

Sing K. S. W. Pure Appl. Chem., 1982, 54(11): 2201.

[41]

Kruk M., Jaroniec M. Chem. Mater., 2001, 13(10): 3169.

[42]

Li G., Hu L., Hill J. M. Appl. Catal. A: Gen., 2006, 301(1): 16.

[43]

Song C., Wang C., Zhu H., Wu X., Dong L., Chen Y. Catal. Lett., 2007, 120(3/4): 215.

[44]

Espinós J. P., Morales J., Barranco A., Caballero A., Holgado J. P., González-Elipe A. R. J. Phys. Chem. B, 2002, 106(27): 6921.

[45]

Janas J., Gurgul J., Socha R. P., Dzwigaj S. Appl. Catal. B: Environ., 2009, 91(1/2): 217.

[46]

Cordoba G., Viniegra M., Fierro J. L. G., Padilla J., Arroyo R. J. Solid State Chem., 1998, 138(1): 1.

[47]

Figueiredo R. T., Martinez-Arias A., Granados M. L., Fierro J. L. G. J. Catal., 1998, 178(1): 146.

[48]

Strohmeier B. R., Leyden D. E., Field R. S., Hercules D. M. J. Cat-al., 1985, 94(2): 514.

[49]

Bechara R., Balloy D., Dauphin J. Y., Grimblot J. Chem. Mater., 1999, 11(7): 1703.

[50]

Chin R. L., Hercules D. M. J. Phys. Chem., 1982, 86(3): 360.

[51]

Xiong H., Zhang Y., Liew K., Li J. J. Mol. Catal. A: Chem., 2005.

[52]

Zsoldos Z., Guczi L. J. Phys. Chem., 1992, 96(23): 9393.

[53]

Ji L., Lin J., Zeng H. C. J. Phys. Chem. B, 2000, 104(8): 1783.

[54]

Zeng H., Lin J., Tan K. J. Mater. Res., 1995, 10(12): 3096.

[55]

Rinaldi R., Fujiwara F., Holderich W., Schuchardt U. J. Catal., 2006, 244(1): 92.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/