Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid

Yanying Dong , Ping Yu , Qilong Sun , Yang Lu , Zhenjiang Tan , Xiaopeng Yu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1051 -1057.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1051 -1057. DOI: 10.1007/s40242-018-8146-6
Article

Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid

Author information +
History +
PDF

Abstract

Effective molecularly imprinted membranes(MIMs) were developed as an efficient adsorbent for the selective removal of p-hydroxybenzoic acid(p-HB) from acetylsalicylic acid(ASA, aspirin). The MIMs were grafted successfully from poly(vinylidene fluoride) microfiltration membranes via reversible addition-fragmentation chain transfer(RAFT) polymerization. The graft copolymerization of acrylic acid(AA) in the presence of template p-hydroxybenzoic acid led to molecularly imprinted polymer(MIP) film coated membranes. The obtained MIMs were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectrophotometer(FTIR) and Raman spectra, and batch mode adsorption studies were carried out to investigate the specific adsorption equilibrium, kinetics and selective recognition properties of different MIMs. The kinetic properties of the MIMs could be well described by the pseudo-second-order rate equation. Selective permeation experiments were performed to evaluate the permeation selectivity of the p-HB imprinted membranes. The observed performances of the MIMs are applicable to the further purification of aspirin.

Keywords

Acetylsalicylic acid / Reversible addition-fragmentation chain transfer / Molecularly imprinted membrane / p-Hydroxybenzoic acid / Selective adsorption

Cite this article

Download citation ▾
Yanying Dong, Ping Yu, Qilong Sun, Yang Lu, Zhenjiang Tan, Xiaopeng Yu. Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid. Chemical Research in Chinese Universities, 2018, 34(6): 1051-1057 DOI:10.1007/s40242-018-8146-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vleesschauwer D. D., Filipe O., Hoffman G., Seifi H. S., Haeck A. New Phytologist, 2018, 217: 305.

[2]

Leaberry B. A. J. Nurs. Care Qual., 2010, 25: 17.

[3]

Routledge E. J., Parker J., Odum J., Ashby J., Sumpter J. P. Toxicol Appl. Pharmacol., 1998, 153: 12.

[4]

Mazzott E., Picca R. A., Malitesta C. Biosens Bioelectron, 2008, 23: 1152.

[5]

Khan H., Khan T., Park J. K. Sep Purif. Technol., 2008, 62: 364.

[6]

Prasad B. B., Banerjee S. React. Funct: Polym., 2003, 55: 159.

[7]

Wulff G. Chem. Rev., 2002, 102: 1.

[8]

Lavignac N., Allender C. J., Brain K. R. Anal. Chim. Acta, 2004, 510: 139.

[9]

Rajkuma R. R., Katterle M., Warsinke A., Möhwald H., Scheller F. W. Biosens. Bioelectron., 2008, 23: 1195.

[10]

Kempe H., Kempe M. Anal. Chem., 2006, 78: 3659.

[11]

Vazquez M. S., Spivak D. A. J. Am. Chem. Soc., 2004, 126: 7827.

[12]

Schmidt R. H., Mosbach K., Haupt K. Adv. Mater., 2004, 16: 719.

[13]

Sreenivasan K. Anal. Chim. Acta, 2007, 583: 284.

[14]

Liu W. F., Zhao H. J., Yang Y. Z., Liu X. G., Xu B. S. Appl. Surf. Sci., 2013, 277: 146.

[15]

Lu Y., Yan C. L., Wang X. J., Wang G. K. Appl. Surf. Sci., 2009, 256: 1341.

[16]

Gao B. J., Wang J., An F. Q., Liu Q. Polymer, 2008, 49: 1230.

[17]

Berti F., Todros S., Lakshmi D., Whitcombe M. J. Biosens Bioelec-tron, 2010, 26: 497.

[18]

Lee E., Park D. W., Lee J. O., Kim D. S., Kim B. S. Colloid Surface A, 2008, 313: 202.

[19]

Meng M. J., Feng Y. H., Zhang M., Ji Y. J., Yan Y. S. Chem. Eng. J., 2013, 231: 132.

[20]

Masakazu Y., Kalsang T., Ştefan O. D. Chem. Rev., 2018, 116: 11500.

[21]

Zhang X., Yang S., Jiang R., Luo A. Q. Sensors Actuat. B: Chem., 2017, 34: 254.

[22]

Wei M. H., Wang S., Jiang W. Y., Chen H. Y., Wang Y., Meng T. J. Inorg. Organomet. P, 2018, 28: 295.

[23]

Du W., Sun M., Guo P., Chang C., Fu Q. Food Chem., 2018, 26: 73.

[24]

Liu F., Hashim N. A., Liu Y., Abed M. R. M., Li K. J. Membrane Sci., 2011, 375: 1.

[25]

Edmondson S., Osborne V. L., Huck W. Chem. Soc. Rev., 2014, 33: 14.

[26]

Senaratne W., Andruzzi L., Ober C. K. Biomacromolecules, 2005, 6: 2427.

[27]

Li Y., Zhou W. H., Yang H. H., Wang X. R. Talanta, 2009, 79: 141.

[28]

Xu Z. H., Li L., Wu F. W., Tan S. J., Zhang Z. B. J. Membr. Sci., 2005, 255: 125.

[29]

Ying L., Yu W. H., Kang E. T., Neoh K. G. Langmuir, 2004, 20: 6032.

[30]

Ho Y. S., McKay G. Process Biochem., 1999, 34: 451.

[31]

Baydemir G., Andaç M., Bereli N., Say R., Denizli A. Ind. Eng. Chem. Res., 2007, 46: 2843.

[32]

Wu Y. L., Yan M., Cui J. Y., Yan Y. S., Li C. X. Adv. Funct. Mater., 2015, 25: 5823.

[33]

Wu Y. L., Liu X. L., Meng M. J., Lv P., Yan M., Wei X., Yan Y. S., Li C. X. J. Membr., 2015, 490: 169.

[34]

Ulbricht M. J. Chromatogr. B, 2004, 804: 113.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/