CuCl2/8-Hydroxyquinoline-catalyzed α-Arylation of Diethyl Malonate with Aryl Bromides

Jiuquan Yang , Guojie Wu , Yupeng He , Fushe Han

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 727 -731.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 727 -731. DOI: 10.1007/s40242-018-8137-7
Article

CuCl2/8-Hydroxyquinoline-catalyzed α-Arylation of Diethyl Malonate with Aryl Bromides

Author information +
History +
PDF

Abstract

A general and efficient coupling of aryl bromides with diethyl malonate is presented. The reaction provided the α-arylated diethyl malonates in moderate to good yields with a low loading of CuCl2(5%, molar fraction) and 8-hydroxyquinoline(5%, molar fraction). This method has good compatibility for a wide range of aryl bromides.

Keywords

Copper catalyst / α-Arylation / Malonate / Ullmann reaction / Hurtley reaction

Cite this article

Download citation ▾
Jiuquan Yang, Guojie Wu, Yupeng He, Fushe Han. CuCl2/8-Hydroxyquinoline-catalyzed α-Arylation of Diethyl Malonate with Aryl Bromides. Chemical Research in Chinese Universities, 2018, 34(5): 727-731 DOI:10.1007/s40242-018-8137-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rieu J. P., Boucherle A., Cousse H., Mouzin G. Tetrahedron, 1986, 42(15): 4095.

[2]

Kimura Y., Nishibe M., Nakajima H., Hamasaki T. Agric. Biol. Chem., 1991, 55(4): 1137.

[3]

Giardiello F. M., Hamilton S. R., Krush A. J., Piantadosi S., Hylind L. M., Celano P., Booker S. V., Robinson C. R., Offerhaus G. J. A. N. Engl. J. Med., 1993, 328(18): 1313.

[4]

Kong F. M., Andersen R. J. J. Org. Chem., 1993, 58(24): 6924.

[5]

Takeda T., Gonda R., Hatano K. Chem. Pharm. Bull., 1997, 45(4): 697.

[6]

Olmedo D., Sancho R., Bedoya L. M., López-Pérez J. L., Olmol E. D., Muñoz E. A. J., Gupta M. P., Feliciano A. S. Molecules, 2012, 17(8): 9245.

[7]

Harrington P. J., Lodewijk E. Org. Process Res. Dev., 1997, 1(1): 72.

[8]

Hegde V. R., Dai P., Patel M., Gullo V. P. Tetrahedron Lett., 1998, 39(32): 5683.

[9]

Kalgutkar A. S., Marnett A. B., Crews B. C., Remmel R. P., Marnett L. J. J. Med. Chem., 2000, 43(15): 2860.

[10]

Dannhardt G., Kiefer W. Eur. J. Med. Chem., 2001, 36(2): 109.

[11]

Jang J. H., Lee H., Sharma A., Lee S. M., Lee T. H., Kang C., Kim J. S. Chem. Commun., 2016, 52(64): 9965.

[12]

Rocca J., Manin S., Hulin A., Aissat A., Verbecq-Morlot W., Prulière-Escabasse V., Wohlhuter-Haddad A., Epaud R., Fanen P., Tarze A. Brit. J. Pharmacol., 2016, 173(11): 1728.

[13]

Hoekstra W. J., Patel H. S., Liang X., Blanc J. B., Heyer D. O., Willson T. M., Iannone M. A., Kadwell S. H., Miller L. A., Pearce K. H., Simmons C. A., Shearin J. J. Med. Chem., 2005, 48(6): 2243.

[14]

Rivkin A., Adams B. Tetrahedron Lett., 2006, 47(14): 2395.

[15]

Wang B., Lu B., Jiang Y. W., Zhang Y. H., Ma D. W. Org. Lett., 2008, 10(13): 2761.

[16]

Bolz I., Schaarschmidt D., Rüffer T., Lang H., Spange S. Angew. Chem. Int. Ed., 2009, 48(40): 7440.

[17]

Albers A., Demeshko S., Dechert S., Bill E., Bothe E., Meyer F. Angew. Chem. Int. Ed., 2011, 50(39): 9191.

[18]

Olmedo D., Sancho R., Bedoya L. M., López-Pérez J. L., Olmol E. D., Muñoz E., Alcamí J., Gupta M. P., Feliciano A. S. Molecules, 2012, 17(8): 9245.

[19]

Enoua G. C., Uray G., Stadlbauer W. J. Heterocyclic Chem., 2012, 49(6): 1415.

[20]

Culkin D. A., Hartwig J. F. Acc. Chem. Res., 2003, 36(4): 234.

[21]

Johansson C. C. C., Colacot T. J. Angew Chem. Int. Ed., 2010, 49(4): 676.

[22]

Bellina F., Rossi R. Chem. Rev., 2010, 110(2): 1082.

[23]

Sivanandan S. T., Shaji A., Ibnusaud I., Johansson Seechurn C. C. C., Colacot T. J. Eur. J. Org. Chem., 2015, 38.

[24]

Evano G., Blanchard N., Toumi M. Chem. Rev., 2008, 108(8): 3054.

[25]

Monnier F., Taillefer M. Angew Chem. Int. Ed., 2008, 47(17): 3096.

[26]

Ma D. W., Cai X. A. Acc. Chem. Res., 2008, 41(11): 1450.

[27]

Monnier F., Taillefer M. Angew Chem. Int. Ed., 2009, 48(38): 6954.

[28]

Liu Y. Y., Wan J. P. Chem.-Asian J., 2012, 7(7): 1488.

[29]

Bhunia S., Pawar G. G., Kumar S. V., Jiang Y., Ma D. W. Angew Chem. Int. Ed., 2017, 56(51): 16136.

[30]

Hurtley W. R. H. J. Chem. Soc., 1929, 1870.

[31]

Hennessy E. J., Buchwald S. L. Org. Lett., 2002, 4(2): 269.

[32]

Xie X. A., Cai G. R., Ma D. W. Org. Lett., 2005, 7(21): 4693.

[33]

Yip S. F., Cheung H. Y., Zhou Z. Y., Kwong F. Y. Org. Lett., 2007, 9(17): 3469.

[34]

Zeng Y., Zhang H. L., Yang Z., Liu C. K., Fang Z., Guo K. Synlett., 2018, 29(1): 79.

[35]

Mino T., Yagishita F., Shibuya M., Kajiwara K., Shindo H., Sakamo-to M., Fujita T. Synlett., 2009, 15: 2457.

[36]

Li Z. Q., Fu L. B., Wei J. J., Ha C. Y., Pei D. Q., Cai Q., Ding K. Synthesis, 2010, 19: 3289.

[37]

Liu J. L., Zeng R. S., Zhou C. M., Zhou J. P. Chin. J. Chem., 2011, 29(2): 309.

[38]

Rout L., Regati S., Zhao C. G. Adv. Synth. Catal., 2011, 353(18): 3340.

[39]

Malakar C. C., Schmidt D., Conrad J., Beifuss U. Org. Lett., 2011, 13(8): 1972.

[40]

Zhao D., Jiang Y. W., Ma D. W. Tetrahedron, 2014, 70(20): 3327.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/