Transient Optical Characteristics of Broad Absorption Band Excitons Modulated by Micro-cavity

Kaijiao Li , Zhenyu Zhang , Haining Cui , Haiyu Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 978 -982.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 978 -982. DOI: 10.1007/s40242-018-8133-y
Article

Transient Optical Characteristics of Broad Absorption Band Excitons Modulated by Micro-cavity

Author information +
History +
PDF

Abstract

The understanding of light-matter interaction within micro-cavity lays the basic groundwork for many future photon-related technologies and applications. We prepared low quality metal-insulator-metal(MIM) micro-cavity consisting massive two-level broad absorption band dye(Nile Red) excitons, which randomly dispersed in SU-8 polymer negative resist matrix and measured their optical characteristics. New binate transmission peaks with large energy separation(so-called Rabi-splitting phenomenon) and their angular anti-crossing behavior in con-sequence of the interaction between dye excitons and confined photons were observed. It was also confirmed that the separated energy can be tuned by changing the doped exciton concentrations. Time-resolved transient absorption measurements showed that such an interaction is indeed a coherent one but rather a strong coupling one and one can modulate such a coherent mechanism by easily adjusting the detuning between dye excitons and confined cavity photons. This work may provide a comprehensive and deep understanding for such massive broad absoprtion band excitons-doped MIM micro-cavities and represent a further step to realize optical cavity-modulated devices in future.

Keywords

Interaction / Exciton / Micro-cavity / Modulation / Transient

Cite this article

Download citation ▾
Kaijiao Li, Zhenyu Zhang, Haining Cui, Haiyu Wang. Transient Optical Characteristics of Broad Absorption Band Excitons Modulated by Micro-cavity. Chemical Research in Chinese Universities, 2018, 34(6): 978-982 DOI:10.1007/s40242-018-8133-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang S., Genov D. A., Wang Y., Liu M., Zhang X. Phys. Rev. Lett., 2008, 101(4): 047401.

[2]

Wang X. D., Liao Q., Xu Z. Z., Wu Y. S., Wei L., Lu X. M., Fu H. B. ACS Photon., 2014, 1(5): 413.

[3]

Liu N., Weiss T., Mesch M., Langguth L., Eigenthaler U., Hirscher M., Sonnichsen C., Giessen H. Nano Lett., 2010, 10(4): 1103.

[4]

Vasa P., Pomraenke R., Cirmi G., De R. E., Wang W., Schwieger S., Leipold D., Runge E., Cerullo G., Lienau C. ACS Nano, 2010, 4(12): 7559.

[5]

Salomon A., Genet C., Ebbesen T. W. Angew. Chem. Int. Ed., 2009, 48(46): 8748.

[6]

Zhang Z. Y., Wang H. Y., Du J. L., Zhang X. L., Hao Y. W., Chen Q. D., Sun H. B. Appl. Phys. Lett., 2014, 105(19): 191117.

[7]

Vakevainen A. I., Moerland R. J., Rekola H. T., Eskelinen A. P., Mar-tikainen J. P., Kim D. H., Torma P. Nano Lett., 2014, 14(4): 1721.

[8]

Hao Y. W., Wang H. Y., Jiang Y., Chen Q. D., Ueno K., Wang W. Q., Misawa H., Sun H. B. Angew. Chem. Int. Ed., 2011, 50(34): 7824.

[9]

Jouy P., Todorov Y., Vasanelli A., Colombelli R., Sagnes I., Sirtori C. Appl. Phys. Lett., 2011, 98(2): 021105.

[10]

Miller R., Northup T. E., Birnbaum K. M., Boca A., Boozer A. D., Kimble H. J. J. Phys. B: At. Mol. Opt., 2005, 38(9): 551.

[11]

Chen S. M., Li G. X., Lei D. Y., Cheah K. W. Nanoscale, 2013, 5(19): 9129.

[12]

Ameling R., Dregely D., Giessen H. Opt. Lett., 2011, 36: 2218.

[13]

Ameling R., Giessen H. Nano Lett., 2010, 10(11): 4394.

[14]

Shalabney A., George J., Hutchison J., Pupillo G., Genet C., Ebbesen T. W. Nat. Commun., 2015, 6: 5981.

[15]

Vahala K. J. Nature, 2003, 424(6950): 839.

[16]

McKeever J., Buck J. R., Boozer A. D., Kimble H. J. Phys. Rev. Lett., 2004, 93(14): 143601.

[17]

Chen L., Zhu Y. M., Zang X. F., Cai B., Li Z., Xie L., Zhuang S. L. Light: Sci. Appl., 2013, 2: e60.

[18]

Zhang X. L., Feng J., Han X. C., Liu Y. F., Chen Q. D., Song J. F., Sun H. B. Optica, 2015, 2(6): 579.

[19]

Jaynes E. T., Cummings F. W. Proc. IEEE, 1963, 51: 89.

[20]

Tischler J. R., Bradley M. S., Bulovic V., Song J. H., Nurmikko A. Phys. Rev. Lett., 2005, 95(3): 036401.

[21]

Peter E., Senellart P., Martrou D., Lemaitre A., Hours J., Gerard J. M., Bloch J. Phys. Rev. Lett., 2005, 95(6): 067401.

[22]

Dousse A., Lanco L., Suffczynski J., Semenova E., Miard A., Lemai-tre A., Sagnes I., Roblin C., Bloch J., Senellart P. Phys. Rev. Lett., 2008, 101(26): 267404.

[23]

Quesada N. Phys. Rev. A, 2012, 86(1): 013836.

[24]

Tessier T. E., Deutsch I. H., Delgado A., Fuentes-Guridi I. Phys. Rev. A, 2003, 68(6): 062316.

[25]

Zhang G. F., Chen Z. Y. Opt. Commun., 2007, 275(1): 274.

[26]

Brune M., Schmidt-Kaler F., Maali A., Dreyer J., Hagley E., Raimond J. M., Haroche S. Phys. Rev. Lett., 1996, 76(11): 1800.

[27]

Raimond J. M., Brune M., Haroche S. Rev. Mod. Phys., 2001, 73(3): 565.

[28]

Mabuchi H., Doherty A. C. Science, 2002, 298(5597): 1372.

[29]

Brune M., Schmidt-Kaler F., Maali A., Dreyer J., Hagley E., Raimond J. M., Haroche S. Nature, 2003, 425(6955): 268.

[30]

Ferry V. E., Sweatlock L. A., Pacifici D., Atwater H. A. Nano Lett., 2008, 8(12): 4391.

[31]

Hayashi S., Ishigaki Y., Fujii M. Phys. Rev. B, 2012, 86(4): 45408.

[32]

Finlayson C. E. Vijaya Prakash G., Baumberg J. J., Appl. Phys. Lett., 2005, 86(4): 041110.

[33]

Fofang N. T., Park T. H., Neumann O., Mirin N. A., Nordlander P., Halas N. J. Nano Lett., 2008, 8(10): 1297.

[34]

Ameling R., Dregely D., Giessen H. Opt. Lett., 2011, 36(12): 2218.

[35]

Banihashemi M., Nakamura T., Kojima T., Kojima K., Noda S., Ahmadi V. Appl. Phys. Lett., 2013, 103(25): 251113.

[36]

Kéna-Cohen S., Maier S. A., Bradley D. D. C. Adv. Opt. Mater., 2013, 1(11): 827.

[37]

Schwartz T., Hutchison J. A., Leonard J., Genet C., Haacke S., Ebbesen T. W. Chem. Phys. Chem., 2013, 14(1): 125.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/