Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors

Can Wang , Dianyu Wang , Shuang Zheng , Xueqing Fang , Wenli Zhang , Ye Tian , Haibo Lin , Haiyan Lu , Lei Jiang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 983 -988.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 983 -988. DOI: 10.1007/s40242-018-8127-9
Article

Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors

Author information +
History +
PDF

Abstract

Biomass-derived porous carbons show great potential as electrode materials for supercapacitors due to the environmental friendliness. However, most of the carbonaceous electrode materials suffer from low specific capacitance and rate capacity because of the poor porosity. Here, we reported a simple and effective approach to prepare micro/nano-hierarchical structured carbon materials derived from rice husk by NaOH-KOH molten salt co-activation. The as-prepared activated carbons exhibit high porosity and suitable pore size distributions for more electrolyte ion adsorption, which are all beneficial for achieving remarkable electrochemical performances, such as high specific capacitance(194.6 F/g), excellent rate capability(retention of 85.9%) and outstanding cycling stability. Thus, the above biomass-derived carbon materials with high porosity and micro/nano structures obtained by co-activation method offered a new insight into novel electrode material for the use in energy storage systems with high energy density and excellent rate performance.

Keywords

Porosity / co-Activation / Electrode material / Electrolyte / Supercapacitor

Cite this article

Download citation ▾
Can Wang, Dianyu Wang, Shuang Zheng, Xueqing Fang, Wenli Zhang, Ye Tian, Haibo Lin, Haiyan Lu, Lei Jiang. Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. Chemical Research in Chinese Universities, 2018, 34(6): 983-988 DOI:10.1007/s40242-018-8127-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y., Song Y., Xia Y. Chem. Soc. Rev., 2016, 45(21): 5925.

[2]

Jung D. S., Ryou M. H., Sung Y. J., Park S. B., Choi J. W. Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229.

[3]

Ding J., Wang H., Li Z., Cui K., Karpuzov D., Tan X., Kohandehghan A., Mitlin D. Energy Environ. Sci., 2015, 8(3): 941.

[4]

Jiang J., Zhu J., Ai W., Fan Z., Shen X., Zou C., Liu J., Zhang H., Yu T. Energy Environ. Sci., 2014, 7(8): 2670.

[5]

Wang G., Zhang L., Zhang J. Chem. Soc. Rev., 2012, 41(2): 797.

[6]

Simon P., Gogotsi Y. Nat. Mater., 2008, 7(11): 845.

[7]

Yan J., Wang Q., Wei T., Fan Z. Adv. Energy Mater., 2014, 4(4): 1300816.

[8]

Hartmann M., Schwieger W. Chem. Soc. Rev., 2016, 45(12): 3311.

[9]

Dutta S., Bhaumik A., Wu K. C. W. Energy Environ. Sci., 2014, 7(11): 3574.

[10]

Rose M., Korenblit Y., Kockrick E., Borchardt L., Oschatz M., Kaskel S., Yushin G. Small, 2011, 7(8): 1108.

[11]

Song S., Ma F., Wu G., Ma D., Geng W., Wan J. J. Mater. Chem. A, 2015, 3(35): 18154.

[12]

Chen J., Zhou X., Mei C., Xu J., Zhou S., Wong C. P. J. Power Sources, 2017, 342: 48.

[13]

Frackowiak E. Phys. Chem. Chem. Phys., 2007, 9(15): 1774.

[14]

Sudhan N., Subramani K., Karnan M., Ilayaraja N., Sathish M. Energy Fuels, 2017, 31(1): 977.

[15]

Xu G., Han J., Ding B., Nie P., Pan J., Dou H., Li H., Zhang X. Green Chem., 2015, 17(3): 1668.

[16]

Bhattacharjya D., Yu J. S. J. Power Sources, 2014, 262: 224.

[17]

Lai F., Miao Y. E., Zuo L., Lu H., Huang Y., Liu T. Small, 2016, 12(24): 3235.

[18]

Teo E. Y. L., Muniandy L., Ng E. P., Adam F., Mohamed A. R., Jose R., Chong K. F. Electrochim. Acta, 2016, 192: 110.

[19]

Lozano-Castello D., Lillo-Rodenas M., Cazorla-Amorós D., Li-nares-Solano A. Carbon, 2001, 39(5): 741.

[20]

Lillo-Ródenas M., Lozano-Castelló D., Cazorla-Amorós D., Li-nares-Solano A. Carbon, 2001, 39(5): 751.

[21]

Hu C., Xi Y., Liu H., Wang Z. L. J. Mater. Chem., 2009, 19(7): 858.

[22]

Liu X., Fechler N., Antonietti M. Chem. Soc. Rev., 2013, 42(21): 8237.

[23]

Beguin F., Presser V., Balducci A., Frackowiak E. Adv. Mater., 2014, 26(14): 2219.

[24]

Zanin H., Saito E., Ceragioli H. J., Baranauskas V., Corat E. J. Mater. Res. Bull., 2014, 49: 487.

[25]

Tabata S., Iida H., Horie T., Yamada S. Med. Chem. Comm., 2010, 1(2): 136.

[26]

Wang D., Fang G., Xue T., Ma J., Geng G. J. Power Sources, 2016, 307: 401.

[27]

Liu D., Zhang W., Lin H., Li Y., Lu H., Wang Y. RSC Advances, 2015, 5(25): 19294.

[28]

Muniandy L., Adam F., Mohamed A. R., Ng E. P. Microporous Mesoporous Mater., 2014, 197: 316.

[29]

Roldan S., Villar I., Rui’z V., Blanco C., Granda M., Menendez R., Santamariá R. Energy Fuels, 2010, 24(6): 3422.

[30]

Liang Q., Ye L., Huang Z. H., Xu Q., Bai Y., Kang F., Yang Q. H. Nanoscale, 2014, 6(22): 13831.

[31]

Zhang L., Zhang F., Yang X., Leng K., Huang Y., Chen Y. Small, 2013, 9(8): 1342.

[32]

Chang J. L., Gao Z. Y., Wang X. R., Wu D. P., Xu F., Wang X., Guo Y. M., Jiang K. Electrochim. Acta, 2015, 157: 290.

[33]

Hou J. H., Cao C. B., Idrees F., Ma X. L. ACS Nano, 2015, 9(3): 2556.

[34]

Zhang W., Lin H., Lin Z., Yin J., Lu H., Liu D., Zhao M. ChemSus-Chem, 2015, 8(12): 2114.

[35]

Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Science, 2006, 313(5794): 1760.

[36]

Wei X. J., Li Y. B., Gao S. Y. J. Mater. Chem. A, 2017, 5(1): 181.

[37]

Yaddanapudi H. S., Tian K., Teng S., Tiwari A. Sci. Rep., 2016, 6: 9.

[38]

Li X., Han C., Chen X., Shi C. Microporous Mesoporous Mater., 2010.

[39]

Gao X. L., Xing W., Zhou J., Wang G. Q., Zhuo S. P., Liu Z., Xue Q. Z., Yan Z. F. Electrochim. Acta, 2014, 133: 459.

[40]

Zhang Y. Y., Gao Z., Song N. N., Li X. D. Electrochim. Acta, 2016, 222: 1257.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/