Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers

Yaping Qiao , Xiaoyan Yuan , Yunhui Zhao , Lixia Ren

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 828 -832.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 828 -832. DOI: 10.1007/s40242-018-8126-x
Article

Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers

Author information +
History +
PDF

Abstract

Controlled preparation of brush polymers is important in the design of functional materials. In this study, poly(tert-butyl acrylate) macromonomers functionalized with norbornenyl end group(NB-PtBA) were synthesized via atom transfer radical polymerization in three different molecular weights, 2000(NB-PtBA-2k), 3000(NB-PtBA-3k), and 8000(NB-PtBA-8k). Additionally, brush polymers with PtBA as side chains were synthesized via ring-opening metathesis polymerization(ROMP). Kinetic studies on ROMP of NB-PtBA showed that there was a ceiling degree of polymerization(CDP) for the brush polymers, beyond which the polymerization of NB-PtBA was out of control. For brush polymers of P[NB-PtBA-2k] and P[NB-PtBA-3k], CDPs were estimated to be ca. 400, but the value of P[NB-PtBA-8k] was ca. 100. Therefore, the controlled ROMP of brush polymers was critical at the CDP limit with increased macromonomer molecular weight.

Keywords

Ring-opening metathesis polymerization / Macromonomer / Brush polymer / Ceiling degree of polymeriza-tion / Kinetics study

Cite this article

Download citation ▾
Yaping Qiao, Xiaoyan Yuan, Yunhui Zhao, Lixia Ren. Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers. Chemical Research in Chinese Universities, 2018, 34(5): 828-832 DOI:10.1007/s40242-018-8126-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rzayev J. ACS Macro Lett., 2012, 1(9): 1146.

[2]

Li J. H., Zhang D. B., Ni X. X., Zheng H. Chinese J. Polym. Sci., 2017, 35(7): 809.

[3]

Song D. P., Gai Y., Yavitt B. M., Ribbe A., Gido S., Watkins J. J. Macromolecules, 2016, 49(17): 6480.

[4]

Djalali R., Li S. Y., Schmidt M. Macromolecules, 2002, 35(11): 4282.

[5]

Ina M., Cao Z., Vatankhah V. M., Everhart M. H., Daniel W. F. M., Dobrynin A. V., Sheiko S. S. ACS Macro Lett., 2017, 6(8): 854.

[6]

Wang D. P., Yang M. Q., Dong Z. X., Bo S. Q., Ji X. L. Chem. Res. Chinese Universities, 2013, 29(4): 820.

[7]

Xia Y., Kornfield J. A., Grubbs R. H. Macromolecules, 2009, 42(11): 3761.

[8]

Dalsin S. J., Hillmyer M. A., Bates F. S. Macromolecules, 2015, 48(13): 4680.

[9]

Miyake G. M., Weitekamp R. A., Piunova V. A., Grubbs R. H. J. Am. Chem. Soc., 2012, 134(34): 14249.

[10]

Liberman-Martin A. L., Chu C. K., Grubbs R. H. Macromol. Rapid Comm., 2017, 38(13): 1700058.

[11]

Sveinbjornsson B. R., Weitekamp R. A., Miyake G. M., Xia Y., At-water H. A., Grubbs R. H. P. Natl. Acad. Sci. USA, 2012, 109(36): 14332.

[12]

Leitgeb A., Wappel J., Slugovc C. Polymer, 2010, 51(14): 2927.

[13]

Xia Y., Olsen B. D., Kornfield J. A., Grubbs R. H. J. Am. Chem. Soc., 2009, 131(51): 18525.

[14]

Zhou Y. F. Sci. China Chem., 2017, 61(2): 141.

[15]

Su L., Heo G. S., Lin Y. N., Dong M., Zhang S. Y., Chen Y. C., Sun G. R., Wooley K. L. J. Polym. Sci. Pol. Chem., 2017, 55(18): 2966.

[16]

Jha S., Dutta S., Bowden N. B. Macromolecules, 2004, 37(12): 4365.

[17]

Love J. A., Morgan J. P., Trnka T. M., Grubbs R. H. Angew. Chem. Int. Ed., 2002, 41(21): 4035.

[18]

Le D., Montembault V., Soutif J. C., Rutnakornpituk M., Fontaine L. Macromolecules, 2010, 43(13): 5611.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/