Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules

Yuping Che , Yang Wang , Tingting You , Huaiqiu Chang , Penggang Yin , Jin Zhai

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 772 -780.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 772 -780. DOI: 10.1007/s40242-018-8120-3
Article

Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules

Author information +
History +
PDF

Abstract

Direct evidence of effects of surface plasmon resonance(SPR) of gold nanorods(GNRs) on dual-band light absorption enhancement with coupling dye molecules was reported by introducing gold nanorod@SiO2(GNR@SiO2) core-shell nanoparticles into a photoelectric conversion system. GNR with asymmetric shape had unusual anisotropic SPR[transversal surface plasmon resonance(TSPR) and longitudinal surface plasmon resonance(LSPR)]. The excel-lent SPR of GNR made it a promising candidate as enhancing light absorption material to increase power conversion efficiency(PCE). The PCE was improved nearly 17.2% upon incorporating GNRs, mostly due to the increase in J sc, while V oc and FF were unchanged. The improvement was mostly contributed by the SPR of the GNRs with coupling of N719. And there was also a complementary to N719 in visible light range. Therefore, SPR is an effective tool in improving the photocurrent and consequently enhancement of PCE. The TSPR and LSPR effects of GNRs on light harvesting were reflected in the increased monochromatic incident photon-to-electron conversion efficiency(IPCE). We also utilized finite-difference time-domain(FDTD) to investigate the light coupling of GNRs with TiO2. Compare to the base anode, the IPCE of optimized electrode showed significant improvement and peaks broadening at 500–600 nm and 610–710 nm. We got an increase in overall conversion efficiency from 6.4% to 7.5%.

Keywords

Gold nanorod / Plasmon / Dual-band absorption / Dye-sensitized solar cell(DSSC) / N719

Cite this article

Download citation ▾
Yuping Che, Yang Wang, Tingting You, Huaiqiu Chang, Penggang Yin, Jin Zhai. Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules. Chemical Research in Chinese Universities, 2018, 34(5): 772-780 DOI:10.1007/s40242-018-8120-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McJeon H., Edmonds J., Bauer N., Clarke L., Fisher B., Flannery B. P., Hilaire J., Krey V., Marangoni G., Mi R., Riahi K., Rogner H., Tavoni M. Nature, 2014, 514(7523): 482.

[2]

O’Regan B., Grrätzel M. Nature, 1991, 353(6346): 737.

[3]

Snaith H. J. Adv. Funct. Mater., 2010, 20(1): 13.

[4]

Jeon I. Y., Kim H. M., Choi I. T., Lim K., Ko J., Kim J. C., Choi H. J., Ju M. J., Lee J. J., Kim H. K., Baek J. B. Nano Energy, 2015, 13: 336.

[5]

Li L. L., Diau E. W. G. Chem. Soc. Rev., 2013, 42(1): 291.

[6]

Wu Y. Z., Marszalek M., Zakeeruddin S. M., Zhang Q., Tian H., Grätzel M., Zhu W. H. Energy Environ. Sci., 2012, 5: 8261.

[7]

Dong H., Wu Z., Lu F., Gao Y., El-Shafei A., Jiao B., Ning S., Hou X. Nano Energy, 2014, 10: 181.

[8]

Kim S. S., Na S. I., Jo J., Kim D. Y., Nah Y. C. Appl. Phys. Lett., 2008, 93(7): 073307.

[9]

Kawawaki T., Takahashi Y., Tatsuma T. J. Phys. Chem. C, 2013, 117(11): 5901.

[10]

Katherine A. W., Richard P. V. D. Annu. Rev. Phys. Chem., 2007, 58: 267.

[11]

Nishijima Y., Ueno K., Yokota Y., Murakoshi K., Misawa H. J. Phys. Chem. Lett., 2010, 1(13): 2031.

[12]

Standridge S. D., Schatz G. C., Hupp J. T. Langmuir, 2009, 25(5): 2596.

[13]

Paz-Soldan D., Lee A., Thon S. M., Adachi M. M., Dong H., Maraghechi P., Yuan M., Labelle A. J., Hoogland S., Liu K., Ku-macheva E., Sargent E. H. Nano Lett., 2013, 13(4): 1502.

[14]

Wang Y., Zhai J., Song Y. L., Lin J., Yin P. G., Guo L. Adv. Mater. Interfaces, 2015, 2(17): 1500383.

[15]

Choi H., Chen W. T., Kamat P. V. ACS Nano, 2012, 6(5): 4418.

[16]

Brown M. D., Suteewong T., Kumar R. S. S., D’Innocenzo V., Petrozza A., Lee M. M., Wiesner U., Snaith H. J. Nano Lett., 2011, 11(2): 438.

[17]

Qi J. F., Dang X. N., Hammond P. T., Belcher A. M. ACS Nano, 2011, 5(9): 7108.

[18]

Du J., Qi J., Wang D., Tang Z. Y. Energ. Environ. Sci., 2012, 5(5): 6914.

[19]

Standridge S. D., Schatz G. C., Hupp J. T. J. Am. Chem. Soc., 2009, 131(24): 8407.

[20]

Kamat P. V. J. Phys. Chem. C, 2007, 111(7): 2834.

[21]

Kamat P. V. J. Phys. Chem. B, 2002, 106(32): 7729.

[22]

Wang Y., Zhai J., Song Y. L., He L. Chem. Commun., 2016, 52(11): 2390.

[23]

Ihara M., Tanaka K., Sakaki K., Honma I., Yamada K. J. Phys. Chem. B, 1997, 101(26): 5153.

[24]

Murphy C. J., Sau T. K., Gole A. M., Orendorff C. J., Gao J. X., Guo L. F., Hunyadi S. E., Li T. J. Phys. Chem. B, 2005, 109(29): 13857.

[25]

Tanvi, Mahajan A., Bedi R. K., Kumar S., Saxena V., Singh A., As-wal D. K. RSC Adv., 2016, 6(53): 48064.

[26]

Wang Y., Zhai J., Song Y. L. RSC Adv., 2015, 5(1): 210.

[27]

Al-Azawi M. A., Bidin N., Abbas K. N., Bououdina M., Azzez S. A. J. Nanophotonics, 2016, 10(2): 026009.

[28]

Vigderman L., Khanal B. P., Zubarev E. R. Adv. Mater., 2012, 24(36): 4811.

[29]

Sönnichsen C., Franzl T., Wilk T. v, Plessen G., Feldmann J., Wil-son O., Mulvaney P. Phys. Rev. Lett., 2002, 88(7): 007402.

[30]

Lim S. P., Lim Y. S., Pandikumar A., Lim H. N., Ng Y. H., Ramaraj R., Bien D. C. S., Abou-Zied O. K., Huang N. M. Phys. Chem. Chem. Phys., 2017, 19(2): 1395.

[31]

Lim S. P., Pandikumar A., Huang N. M., Lim H. N. Int. J. Hydrogen Energy, 2014, 39(27): 14720.

[32]

Du J. M., Zhang J. L., Liu Z. M., Han B. X., Jiang T., Huang Y. Langmuir, 2006, 22(3): 1307.

[33]

Ni W. H., Kou X. S., Yang Z., Wang J. F. ACS Nano, 2008, 2(4): 677.

[34]

Kou X. S., Zhang S. Z., Tsung C. K., Yang Z., Yeung M. H., Stucky G. D., Sun L. D., Wang J. F., Yan C. H. Chem. Eur. J., 2007, 13(10): 2929.

[35]

Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P. Coordin. Chem. Rev., 2005, 249(17/18): 1870.

[36]

Gole A., Murphy C. J. Langmuir, 2008, 24(1): 266.

[37]

Graf C., Vossen D. L. J., Imhof A. v, Blaaderen A. Langmuir, 2003, 19(17): 6693.

[38]

Zhan Q. Q., Qian J., Li X., He S. L. Nanotechnology, 2010, 21(5): 055704.

[39]

Johnson C. J., Dujardin E., Davis S. A., Murphy C. J., Mann S. J. Mater. Chem., 2002, 12(6): 1765.

[40]

Chang S., Li Q., Xiao X. D., Wong K. Y., Chen T. Energ. Environ. Sci., 2012, 5(11): 9444.

[41]

Ding B., Lee B. J., Yang M. J., Jung H. S., Lee J. K. Adv. Energy Mater., 2011, 1(3): 415.

[42]

Shao L., Fang C. H., Chen H. J., Man Y. C., Wang J. F., Lin H. Q. Nano Lett., 2012, 12(3): 1424.

[43]

Liu Y. M., Zhai H. W., Guo F., Huang N., Sun W. W., Bu C. H., Peng T., Yuan J. K., Zhao X. Z. Nanoscale, 2012, 4(21): 6863.

[44]

Tompkins H. G. J. Appl. Phys., 1991, 70(7): 3876.

[45]

Johnson P. B., Christy R. W. Phys. Rev. B, 1972, 6(12): 4370.

[46]

Zhang S. P., Bao K., Halas N. J., Xu H. X., Nordlander P. Nano Lett., 2011, 11(4): 1657.

[47]

Huang S. Y., Schlichthörl G., Nozik A. J., Grätzel M., Frank A. J. J. Phys. Chem. B, 1997, 101(4): 2576.

[48]

Bohren C. F., Huffmann D. R. Absorption and Scattering of Light by Small Particles, 1983, New York: Wiley Interscience, 247.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/