Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids

Xuan Zhou , Jie Yu , Peng Wang , Jianping Zhang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 989 -994.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 989 -994. DOI: 10.1007/s40242-018-8105-2
Article

Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids

Author information +
History +
PDF

Abstract

Four surfactants, sodium cholate(SC), n-dodecyl-β-D-maltopyranoside(DDM), lauryldimethylamine oxide(LDAO) and Triton X-100(TX), which are generally used in photosynthetic pigment-protein complexes preparation, were studied on their interaction with photosynthetic membrane from Rhodobacter sphaeroides 2.4.1 by electrochromic absorption band-shift of endogenous carotenoids and by vesicle size measurements as well. The surfactant critical micelle concentration(cmc) was found to be negatively correlated with the capability of enhancing the permeability of photosynthetic membranes to proton, and more elaborated model of surfactants interacting with membranes was obtained. The electrochromic absorption band-shift measurement might develop into a useful tool to evaluate the effects of surfactants on various membranes.

Keywords

Surfactant / Photosynthetic membrane / Electrochromic effect / Carotenoid / Permeability

Cite this article

Download citation ▾
Xuan Zhou, Jie Yu, Peng Wang, Jianping Zhang. Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids. Chemical Research in Chinese Universities, 2018, 34(6): 989-994 DOI:10.1007/s40242-018-8105-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paternostre M. T., Roux M., Rigaud J. L. Biochem., 1988, 27: 2668.

[2]

Inoue T. Vesicles, 1996, New York: Marcel Dekker, 151.

[3]

Ueno M. Biochem., 1989, 28: 5631.

[4]

Sun C., Ueno M. Colloid Polym. Sci., 2000, 278: 855.

[5]

Walde P., Sunamoto J., O’Connor C. J. Biochim. Biophys. Acta, 1987, 905: 30.

[6]

Paternostre M. T., Roux M., Rigaud J. L. Biochem., 1988, 27: 2668.

[7]

Paternostre M., Meyer O., Gabrielle-Madelmont C., Lesieur S., Ghanam M., Ollivon M. Biophys. J., 1995, 69: 2476.

[8]

Ruiz J., Goni F. M., Alonso A. Biochim. Biophys. Acta, 1988, 937: 127.

[9]

Nagawa Y., Regen S. L. J. Am. Chem. Soc., 1992, 114: 1668.

[10]

Edwards K., Almgren M. Langmuir, 1992, 8: 824.

[11]

de La Maza A., Parra J. L., Garcia M. T., Ribosa I., Sanchez Leal J. J. Colloid Interface Sci., 1992, 148: 310.

[12]

Lasch J. Biochim. Biophys. Acta, 1995, 1241: 269.

[13]

Inoue T., Yamahata T., Shimozawa R. J. Colloid Interface Sci., 1992, 149: 345.

[14]

Inoue T. In Vesicles: Surfactant Science Series, 1996, New York: Marcel Dekker Inc., 151.

[15]

Albalak A., Zeidel M. L., Zucker S. D., Jackson A. A., Donovan J. M. Biochemistry, 1996, 35: 7936.

[16]

Treyer M., Walde P., Oberholzer T. Langmuir, 2002, 18: 1043.

[17]

Young M., Dinda M., Singer M. Biochim. Biophys. Acta, 1983, 735: 429.

[18]

Paternostre M. T., Roux M., Rigaud J. L. Biochem., 1988, 27: 2668.

[19]

Memoli A., Annesini M. C., Petralito S. Int. J. Pharm., 1999, 184: 227.

[20]

Annesini M. C., Memoli A., Petralito S. J. Memb. Sci., 2000, 180: 121.

[21]

Fleischman D. E., Clayton R. K. Photochem. Photobiol., 1968, 8: 287.

[22]

Matthew G. G., Jackson J. B. Biochim. Biophys. Acta, 1993, 1144: 191.

[23]

Jackson J. B., Crofts A. R. FEBS L., 1969, 4(3): 185.

[24]

Elzbieta G. G., Anyony R. C. Biochim. Biophys. Acta, 1984, 766: 322.

[25]

Petty K. M., Jackson J. B. Biochim. Biophys. Acta, 1979, 547: 463.

[26]

Holemes N. G., Hunter C. N., Robert A. N., Crofts A. R. FEBS L., 1980, 115(1): 43.

[27]

Matsuura K., Shimada K. Biochim. Biophys. Acta, 1993, 1140: 293.

[28]

Bowyer J. R., Crofts A. R. Arch. Biochem. Biophys., 1980, 202(2): 582.

[29]

Malferrari M., Malferrari D., Francia F., Galletti P., Tagliavini E., Venturoli G. Biochim. Biophys. Acta, 2015, 1848: 2898.

[30]

Assunta B. M., Bruno A. M. Methods in Enzymology, 1971, 23: 556.

[31]

Toyoshima Y., Fukutaka E. FEBS L., 1982, 150: 223.

[32]

Zhang J. P., Fujii R., Qian P., Inaba T., Mizoguchi T., Koyama Y., Onaka K., Watanabe Y. J. Phys. Chem. B, 2000, 104(15): 3683.

[33]

Yu D. Y., Huang G. H., Xu F. X., Wang M. F., Liu S., Huang F. Photosynth. Res., 2014, 120(3): 311.

[34]

Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. H., Clayton R. K. Proc. Natl. Acad. Sci., 1980, 77: 87.

[35]

Koepke K., Hu X., Muenke C., Schulten K., Michel H. Structure, 1996, 4: 581.

[36]

McDermott G., Prince S. M., Freer A.A., Hawthornthwaite-Lawless A. M., Papiz M. Z., Cogdell R. J., Isaacs N. W. Nature, 1995, 374: 517.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/