Heterostructure Ag@WO3–x Composites with High Selectivity for Breaking Azo-bond

Zhenxing Fang , Yan Chen , Boran Wang , Shihui Jiao , Guangsheng Pang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 517 -522.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 517 -522. DOI: 10.1007/s40242-018-8095-0
Article

Heterostructure Ag@WO3–x Composites with High Selectivity for Breaking Azo-bond

Author information +
History +
PDF

Abstract

The heterostructure Ag@WO3–x(x=0.1 or 1) composites with high selectivity for breaking azo-bond were obtained by in situ reduction of Ag2WO4. The crystal structure and morphology of Ag@WO3–x were characterized by X-ray powder diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The residue solution of methyl orange(MO) after degradation was tested by gas chromatograph mass spectrometer (GCMS) to analyze the exact components. The results indicate that the products after degradation are N,N-dimethylaniline, N,N-dimethyl-p-phenylenediamine and sulfanilic acid. This is caused by specific breaking of azo-bond in MO. The azo-bond breaking of MO by Ag@WO3–x could occur in dark without any light illumination. Therefore, we proposed a possible mechanism for this azo-bond breaking reaction based on the reaction condition and results.

Keywords

Heterostructure / In situ reduction / Azo-bond

Cite this article

Download citation ▾
Zhenxing Fang, Yan Chen, Boran Wang, Shihui Jiao, Guangsheng Pang. Heterostructure Ag@WO3–x Composites with High Selectivity for Breaking Azo-bond. Chemical Research in Chinese Universities, 2018, 34(4): 517-522 DOI:10.1007/s40242-018-8095-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y., Lu A., Jin S., Wang C. J. Hazard. Mater., 2009, 170: 479.

[2]

Yu J., Xiong J., Cheng B., Liu S. Appl. Catal. B: Environm., 2005, 60: 211.

[3]

Velmurugan R., Swaminathan M. Research on Chemical Intermediates, 2013, 41: 1227.

[4]

Zhang P., Wang L., Zhang X., Hu J., Shao G. Nano-Micro Lett., 2014, 7: 86.

[5]

Ashkarran A. A., Mohammadi B. Appl. Surf. Sci., 2015, 342: 112.

[6]

Li Y., Wu W., Dai P., Zhang L., Sun Z., Li G., Wu M., Chen X., Chen C. RSC Adv., 2014, 4: 23831.

[7]

Abe R., Takami H., Murakami N., Ohtani B. J. Am. Chem. Soc., 2008, 130: 7780.

[8]

Zheng H., Ou J., Strano M. S., Kalantar-zadeh K. Adv. Functional Mater., 2011, 21: 2175.

[9]

Wakimoto R., Kitamura T., Ito F., Usami H., Moriwaki H. Appl. Catal. B: Environm., 2015, 166: 544.

[10]

Hameed A., Gondal M. A., Yamani Z. H. Catal. Commun., 2004, 5: 715.

[11]

Tang J., Ye J. J. Mater. Chem., 2005, 15: 4246.

[12]

Tang Y., Shao Y., Chen N., Liu X., Chen S. Q., Yao K. F. RSC Adv., 2015, 5: 34032.

[13]

Xia S., Liu F., Ni Z., Shi W., Xue J., Qian P. Appl. Catal. B: Environm., 2014, 144: 570.

[14]

Andres J., Gracia L., Gonzalez-Navarrete P., Longo V. M., Avansi W., Volanti D. P., Ferrer M. M., Lemos P. S., La Porta F. A., Hernandes A. C., Longo E. Scientific Reports, 2014, 4: 5391.

[15]

Longo E., Cavalcante L. S., Volanti D. P., Gouveia A. F., Longo V. M., Varela J. A., Orlandi M. O., Andres J. Scientific Reports, 2013, 3: 1676.

[16]

Samide A., Tutunaru B., Moanţă A., Ionescu C. Int. J. Electrochem. Sci., 2015, 10: 4637.

[17]

Xi G., Ye J., Ma Q., Su N., Bai H., Wang C. J. Am. Chem. Soc., 2012, 134: 6508.

[18]

Zhu Q., Peng Y., Lin L., Fan C., Gao G., Wang R., Xu A. J. Mater. Chem. A, 2014, 2: 4429.

[19]

Tan H., Zhao Z., Niu M., Mao C., Cao D., Cheng D., Feng P., Sun Z. Nanoscale, 2014, 6: 10216.

[20]

Zhu H., Xia P., Li Y., Ho W., Yu J. Appl. Surf. Sci., 2017, 391: 175.

[21]

Weon S., Kim J., Choi W. Appl. Catal. B: Environm., 2018, 220: 1.

[22]

Fang Z., Jiao S., Kang Y., Pang G., Feng S. ChemistryOpen, 2017, 6: 261.

[23]

Fang Z., Jiao S., Wang B., Yin W., Liu S., Gao R., Liu Z., Pang G., Feng S. Materials Today Energy, 2017, 6: 146.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/