Development of a Two-photon Ratiometric Fluorescent Probe for Glutathione and Its Applications in Living Cells

Gaoping Xu , Yonghe Tang , Weiying Lin

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 523 -527.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 523 -527. DOI: 10.1007/s40242-018-8089-y
Article

Development of a Two-photon Ratiometric Fluorescent Probe for Glutathione and Its Applications in Living Cells

Author information +
History +
PDF

Abstract

Glutathione(GSH), as the most abundant intracellular biothiol, plays an important role in the redox homeostasis of the organism. Abnormal concentrations of GSH in cells may lead to many malignant diseases, such as cancer, liver damage and neurodegenerative diseases. It is urgent to develop effective methods to detect GSH in living organisms. In this work, a new two-photon ratiometric fluorescent probe Co-GSH based on the coumarinchalcone dye platform was judiciously developed. Based on the Michael-addition reaction, Co-GSH was able to identify GSH with high selectivity and sensitivity. Furthermore, assisted by laser-scanning confocal microscopy, Co-GSH could specifically response GSH over the other biothiols, including Cys and Hcy, in living HeLa cells by using one- and two-photon modes.

Keywords

Fluorescence probe / Glutathione / Michael-addition reaction / Two-photon / Ratiometric

Cite this article

Download citation ▾
Gaoping Xu, Yonghe Tang, Weiying Lin. Development of a Two-photon Ratiometric Fluorescent Probe for Glutathione and Its Applications in Living Cells. Chemical Research in Chinese Universities, 2018, 34(4): 523-527 DOI:10.1007/s40242-018-8089-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller G. L. J. Am. Chem. Soc., 1960, 82(16): 4439.

[2]

Hyman L. M., Franz K. J. Coord. Chem. Rev., 2012, 256(20): 2333.

[3]

Meister A., Anderson M. E. Ann. Rev. Biochem., 1983, 52(6): 711.

[4]

Townsend D. M., Tew K. D., Tapiero H. Biomed. Pharmacother., 2003, 57(4): 145.

[5]

Carvalho F. D., Remião F., Valet P., Timbrell J. A., Bastos M. L., Ferreira M. A. Biomed. Chromatogr., 1994, 8(3): 134.

[6]

Raoof J. B., Ojani R., Baghayeri M. Sens. Actuators B, 2009, 143(1): 261.

[7]

Rellán-Álvarez R., Hernández L. E., Abadía J. Álvarez - Fe.rnández A.-F. A. Anal. Biochem., 2006, 356(2): 254.

[8]

Lakowicz J. R. Principles of Fluorescence Spectroscopy, 2006

[9]

Kim H. M., Cho B. R. Chem. Rev., 2015, 115(11): 5014.

[10]

Carrone G., Etchenique R. Anal. Chem., 2015, 87(8): 4363.

[11]

Niu L., Guan Y., Chen Y., Wu L., Tung C., Yang Q. Chem. Commun., 2013, 49(13): 1294.

[12]

Lim S. Y., Na M. J., Kim H. J. Sens. Actuators B, 2013, 185(8): 720.

[13]

Hong K. H., Kim D. I., Kwon H., Kim H. J. RSC Adv., 2014, 4(2): 978.

[14]

Wang S., Wu Q., Wang H., Zheng X., Shen S., Zhang Y., Miao J., Zhao B. Biosens. Bioelectron., 2014, 55(9): 386.

[15]

Hou X., Guo X., Chen B., Liu C., Gao F., Zhao J., Wang J. Sens. Actuators, B, 2015, 209: 838.

[16]

Chen C., Liu W., Xu C., Liu W. Biosens. Bioelectron, 2015, 71: 68.

[17]

Liu M., Jiang Q., Lu Z., Huang Y., Tan Y., Jiang Q. Luminescence, 2015, 30(8): 1395.

[18]

Qi F., Liu X., Yang L., Chen W., Song X. Tetrahedron, 2016, 72(44): 6909.

[19]

Li J., Yin C., Chao J., Huo F. Anal. Methods, 2016, 8(37): 6748.

[20]

Wang Y., Zhu M., Jiang E., Hua R., Li Q. Sci. Rep., 2017, 7(1): 4377.

[21]

Li Y., Wang K., Liu B., Lu X., Li M., Ji L., Mao Z. Sens. Actuators, B, 2018, 255: 193.

[22]

Wang F., Feng C., Lu L., Xu Z., Zhang W. Talanta, 2018, 169: 149.

[23]

Li J., Kwon Y., Chung K. S., Chang S. L., Lee D., Yin C. Theranos-tics, 2018, 8(5): 1411.

[24]

Hu Q., Yu C., Xia X., Zeng F., Wu S. Biosens. Bioelectron., 2016, 81: 341.

[25]

Cheng X., Jia H., Feng J. J. Mater. Chem. B, 2013, 1(33): 4110.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/