Bio-template Synthesis of Spirulina/α-Fe2O3 Composite with Improved Surface Wettability

Qingling Meng , Chenchen Xie , Ran Ding , Liang Cao , Ke Ma , Li Li , Zhankun Weng , Zuobin Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1058 -1062.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1058 -1062. DOI: 10.1007/s40242-018-8080-7
Article

Bio-template Synthesis of Spirulina/α-Fe2O3 Composite with Improved Surface Wettability

Author information +
History +
PDF

Abstract

Bio-template method has recently attracted much attention because of its prominent advantages in obtaining morphology controlled materials with structural specificity, complexity and their unique functions. The bio-template method combining with electrochemical deposition was employed to synthesize spirulina/hematite composite microstructures using native spirulina as template. A great amount of hematite(α-Fe2O3) nanoparticles can be formed and deposited onto the spirulina, resulting in a robust and pseudo-homogeneous surface. And the spirulina/α-Fe2O3 composite exhibits an improved surface wettability due to its helical morphology. This facile strategy may open new horizons in the field of replicating specific biological structures for functional materials in other potential applications.

Keywords

α-Fe2O3 nanoparticle / Spirulina platensis / Bio-template synthesis / Electrochemical deposition / Hydro-phobic wettability

Cite this article

Download citation ▾
Qingling Meng, Chenchen Xie, Ran Ding, Liang Cao, Ke Ma, Li Li, Zhankun Weng, Zuobin Wang. Bio-template Synthesis of Spirulina/α-Fe2O3 Composite with Improved Surface Wettability. Chemical Research in Chinese Universities, 2018, 34(6): 1058-1062 DOI:10.1007/s40242-018-8080-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos A. P. Science, 1996, 271: 933.

[2]

Ashoori R. C. Nature, 1996, 379: 413.

[3]

Laurent S., Forge D., Port M., Roch A., Robic C., Vander E. L., Muller R. N. Chem. Rev., 2008, 108: 2064.

[4]

Sun S., Murray C. B., Weller D., Folks L., Moser A. Science, 2000, 287: 1989.

[5]

Zhong L. S., Hu J. S., Liang H. P., Cao A., Song M., Wan W. G. L. J. Adv. Mater., 2006, 18: 2426.

[6]

Liu X., Chang Z., Luo L., Lei X., Liu J., Sun X. J. Mater. Chem., 2012, 22: 7232.

[7]

Reddy M. V., Yu T., Sow C. H., Shen Z. X., Lim C. T., Subba R. G. V., Chowdari B. V. R. Adv. Funct. Mater., 2007, 17: 2792.

[8]

Li Z., Lai X., Wang H., Mao D., Xing C., Wang D. Nanotechnology, 2009, 20: 245603.

[9]

Lai X., Li J., Korgel B. A., Dong Z., Li Z., Su F., Du J., Wang D. Angew. Chem., Int. Ed., 2011, 50: 2738.

[10]

Mao D., Yao J., Lai X., Yang M., Du J., Wang D. Small, 2011, 7: 578.

[11]

Nuli Y., Zhang P., Guo Z., Liu H. J. Electrochem. Soc., 2008, 155: A196.

[12]

Liu J., Li Y., Fan H., Zhu Z., Jiang J., Ding R., Hu Y., Huang X. Chem. Mater., 2009, 22: 212.

[13]

Chen J. S., Zhu T., Yang X. H., Yang H. G., Lou X. W. J. Am. Chem. Soc., 2010, 132: 13162.

[14]

Kim H. S., Piao Y., Kang S. H., Hyeon T., Sung Y. E. Electrochem. Commun., 2010, 12: 382.

[15]

Huang J., Lin L., Sun D., Chen H., Yang D., Li Q. Chem. Soc. Rev., 2015, 44: 6330.

[16]

Moradi M., Kim J. C., Qi J., Xu K., Li X., Ceder G., Belcher A. M. Green Chem., 2016, 18: 2619.

[17]

Liu Y., Song Y., Niu S., Zhang Y., Han Z., Ren L. RSC Adv., 2016, 6: 108974.

[18]

Chen L., Wang X. Chem. Commun., 2017, 53: 11988.

[19]

Tao X. Y., Du J., Li Y. P., Yang Y. C., Fan Z., Gan Y. P., Huang H., Zhang W. K., Dong L. X., Li X. D. Adv. Energy Mater., 2011, 1: 534.

[20]

Qiu Z., Huang H., Du J., Fen T., Zhang W. K., Gan Y. P., Tao X. Y. J. Phys. Chem. C, 2013, 117: 13770.

[21]

Tao X. Y., Li Y. P., Du J., Xia Y., Yang Y. C., Huang H., Gan Y. P., Zhang W. K., Li X. D. J. Mater. Chem., 2011, 21: 9095.

[22]

Xia Y., Zhang W. K., Xiao Z., Huang H., Zeng H. J., Chen X. R., Chen F., Gan Y. P., Tao X. Y. J. Mater. Chem., 2012, 22: 9209.

[23]

Tao X. Y., Dong L. X., Wang X. N., Zhang W. K., Nelson B. J., Li X. D. Adv. Mater., 2010, 22: 2055.

[24]

Xia Y., Zhang W. K., Huang H., Gan Y. P., Xiao Z., Qian L.C., Tao X. Y. J. Mater. Chem., 2011, 21: 6498.

[25]

Xia Y., Xiao Z., Dou X., Huang H., Lu X. H., Yan R. J., Gan Y. P., Zhu W. J., Tu J. P., Zhang W. K., Tao X. Y. ACS Nano, 2013, 7: 7083.

[26]

Tu Y. D., Zhou Z., Yan R. J., Gan Y. P., Huang W. Z., Weng X. X., Huang H., Zhang W. K., Tao X. Y. RSC Adv., 2012, 2: 10585.

[27]

Yan X., Zhou Q., Yu J., Xu T., Deng Y., Tang T., Feng Q., Bian L., Zhang Y., Ferreira A., Zhang L. Adv. Funct. Mater., 2015, 25: 5333.

[28]

Tao X., Wu R., Xia Y., Huang H., Chai W., Feng T., Gan Y., Zhang W. ACS Appl. Mater. Interfaces, 2014, 6: 3696.

[29]

Meng Q., Wang Z., Chai X., Weng Z., Ding R., Dong L. Appl. Surf. Sci., 2016, 368: 303.

[30]

Zeng Q., Bai J., Li J., Xia L., Huang K., Li X., Zhou B. J. Mater. Chem. A., 2015, 3: 4345.

[31]

Duret A., Gräzel M. J. Phys. Chem. B, 2005, 109: 17184.

[32]

Schrebler R., Bello K., Vera F., Gury P., Munoz E., Rio R. D., Meier H. G., Cordova R., Dalchiele E. A. Solid-State Lett., 2006, 9: C110.

[33]

Lu L., Li L., Wang X., Li G. J. Phys. Chem. B, 2005, 109: 17151.

[34]

Kleiman-Shwarsctein A., Huda M. N., Walsh A., Yan Y., Stucky G. D., Hu Y., Al-Jassim M. M., McFarland E. W. Chem. Mater., 2009, 22: 510.

[35]

Sahoo B. N., Kandaubramanian B. RSC Adv., 2014, 4: 22053.

[36]

Lv D., Shao H., Gao X., Lu H., Ma H. RSC Adv., 2016, 6: 93419.

[37]

Partheeban T., Sathish M. RSC Adv., 2016, 6: 78791.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/