Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries

Shuqin Yang , Yuan Li , Yongjie Yuan , Zhentao Dong , Kailiang Ren , Yumeng Zhao

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 604 -608.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 604 -608. DOI: 10.1007/s40242-018-8079-0
Article

Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries

Author information +
History +
PDF

Abstract

We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30―40 nm) at annealing temperatures of 500 and 600 °C. However, as the annealing temperature was increased to 700 and 800 °C, the crystals began to combine with each other and grew into further larger crystals(90―100 nm). The electrochemical performance of the annealed oxides was measured at 60 °C using chronopotentiometry, potentiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600 °C, with a maximum discharge capacity of 563 mA·h/g. The better electrochemical performance of LaFeO3 annealed at 600 °C could be ascribed to their smaller and more homogeneous crystals.

Keywords

Metal hydride/nickel(MH/Ni) battery / Negative electrode material / Perovskite LaFeO3 / Microstructure / Electrochemical property

Cite this article

Download citation ▾
Shuqin Yang, Yuan Li, Yongjie Yuan, Zhentao Dong, Kailiang Ren, Yumeng Zhao. Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries. Chemical Research in Chinese Universities, 2018, 34(4): 604-608 DOI:10.1007/s40242-018-8079-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y. F., Pan H. G., Gao M. X., Wang Q. D. J. Mater. Chem., 2011, 21: 4743.

[2]

Kaabi A., Tliha M., Dhahri A., Khaldi C., Lamloumi J. Ceram. Int., 2016, 42: 11682.

[3]

Yang S. Q., Han S. M., Li Y., Yang S. X., Hu L. Mater. Sci. Eng. B, 2011, 176(3): 231.

[4]

Zhou W. H., Zhu D., Tang Z. Y., Wu C. L., Huang L. W., Ma Z. W., Chen Y. G. J. Power Sources, 2017, 343: 11.

[5]

Semra T., Yang S., Ezgi O. S., Dag N., Tayfur O. Int. J. Hydrogen Energy, 2016, 41(23): 9948.

[6]

Zhang Q. G., Chen Z. L., Li Y. T., Fang F., Sun D.L., Ouyang L. Z., Zhu M. J. Phys. Chem. C, 2015, 119(9): 4719.

[7]

Yasuoka S., Ishida J., Kai T., Kajiwara T., Doi S., Yamazaki T., Kishida K., Inui H. Int. J. Hydrogen Energy, 2017, 42(12): 11574.

[8]

Iwase K., Terashita N., Mori K., Yokota H., Suzuki T. Inorg. Chem., 2013, 52(24): 14270.

[9]

Du P. C., Hu X. W., Yi C., Liu H. C., Liu P., Zhang H. L., Gong X. Adv. Funct. Mater., 2015, 25(16): 2420.

[10]

Khaerudini D. S., Guan G. Q., Zhang P., Xiaoketi P., Hao X. G., Wang Z. D., Kasai Y., Abudula A. J. Power Sources, 2016, 334: 137.

[11]

Esaka T., Sakaguchi H., Kobayashi S. Solid State Ionics, 2004, 166(3/4): 351.

[12]

Xia X., Li X. Q., Cui J. J., Liu H. T. Acta Chim. Sinica, 2004, 62(23): 2355.

[13]

Lim D. K., Im H. N., Singh B., Park C. J., Song S. J. Electrochim. Acta, 2013, 102: 393.

[14]

Lim D. K., Im H. N., Kim J., Song S. J. J. Phys. Chem. Solids, 2013, 74(1): 115.

[15]

Wang Q., Deng G., Chen Y. Q., Chen Y. G., Cheng N. P. J. Appl. Phys., 2013, 113(5): 053305.

[16]

Wang Q., Chen Z. Q., Chen Y. G., Cheng N. P., Hui Q. Ind. Eng. Chem. Res., 2012, 51(37): 11821.

[17]

Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M. Electrochim. Acta, 2010, 55(3): 1120.

[18]

Song M., Chen Y. G., Tao M. D., Wu C. L., Zhu D., Yang H. Electrochim. Acta, 2010, 55(9): 3103.

[19]

Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M. Electrochim. Acta, 2010, 55(3): 884.

[20]

Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H. Electrochim. Acta, 2009, 54(15): 3910.

[21]

Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M. Int. J. Hydrogen Energy, 2009, 34(13): 5568.

[22]

Song M., Chen Y. G., Tao M. D., Wu C. L., Zhu D., Yang H. J. Rare Metals, 2010, 28(4): 596.

[23]

Kaabi A., Tliha M., Dhahri A., Khaldi C., Lamloumi J. Ceram. Int., 2016, 42(10): 11682.

[24]

Pei Y. R., Li Y., Che J. Y., Shen W. Z., Wang Y. C., Yang S. Q., Han S. M. Int. J. Hydrogen Energy, 2015, 40(28): 8742.

[25]

Pei Y. R., Du W. K., Li Y., Shen W. Z., Wang Y. C., Yang S. Q., Han S. M. Phys. Chem. Chem. Phys., 2015, 17(27): 18185.

[26]

Yuan Y. J., Dong Z. T., Li Y., Zhang L., Zhao Y. M., Wang B., Han S. M. Progress in Natural Science: Materials International, 2017, 27(1): 88.

[27]

Yang S. Q., Liu H. P., Han S. M., Li Y., Shen W. Z. Appl. Surf. Sci., 2013, 271: 210.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/