3D-Graphene/Boron Nitride-stacking Material: a Fundamental van der Waals Heterostructure

Peng Fu , Ran Jia , Jian Wang , Roberts I. Eglitis , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 434 -439.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 434 -439. DOI: 10.1007/s40242-018-8075-4
Article

3D-Graphene/Boron Nitride-stacking Material: a Fundamental van der Waals Heterostructure

Author information +
History +
PDF

Abstract

The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the inter-face between graphene and h-BN layers were also reported. The metal-semiconductor transform of the G/BN material can be achieved by adjusting the stacking form of the h-BN layers or changing the proportion of graphene layers in the unit cell. An electrostatic potential well was found at the interface. Due to the potential well and the only dispersion correlation at the interface, the dielectric constant ε zz in vertical direction was independent on the variety of the thickness or the proportion of the compositions in an unit cell.

Keywords

van der Waals heterostructure / Graphene / h-BN / Density functional theory / Electronic property

Cite this article

Download citation ▾
Peng Fu, Ran Jia, Jian Wang, Roberts I. Eglitis, Hongxing Zhang. 3D-Graphene/Boron Nitride-stacking Material: a Fundamental van der Waals Heterostructure. Chemical Research in Chinese Universities, 2018, 34(3): 434-439 DOI:10.1007/s40242-018-8075-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K. S., Morozov S. V., Jiang D. Science, 2004, 306(5696): 666.

[2]

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Nature, 2005, 438(7065): 197.

[3]

Zhang Y., Tan Y. W., Stormer H. L., Kim P. Nature, 2005, 438(7065): 201.

[4]

Berger C., Song Z. M., Li X. B., Wu X. S., Brown N., Naud C., Mayou D., Li T. B., Hass J., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A. Science, 2006, 312(5777): 1191.

[5]

Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., Oster-walder J. Science, 2004, 303(5655): 217.

[6]

Yoffe A. D. Adv. Phys., 2002, 51(2): 799.

[7]

Liu H., Neal A. T., Zhu Z., Luo Z., Xu X., Tománek D., Ye P. D. ACS Nano, 2014, 8(4): 4033.

[8]

Li L. F., Lu S. Z., Pan J. B., Qin Z. H., Wang Y. Q., Wang Y. L., Cao G. Y., Du S. X., Gao H. J. Adv. Mater., 2014, 26(28): 4820.

[9]

Geim A. K., Grigorieva I. V. Nature, 2013, 499(7459): 419.

[10]

Novoselov K. S., Mishchenko A., Carvalho A. Castro Neto A. H., Science, 2016, 353(6298): aac9439.

[11]

Lee C. H., Lee G. H., van der Zande A. M., Chen W., Li Y., Han M., Cui X., Arefe G., Nuckolls C., Heinz T. F., Guo J., Hone J., Kim P. Nat. Nanothech., 2014, 9(9): 676.

[12]

Giovannetti G., Khomyakov P. A., Brocks G., Kelly P. J., van den Brink J. Phys. Rev. B, 2007, 76(7): 073103.

[13]

Slawińska J., Zasada I., Klusek Z. Phys. Rev. B, 2010, 81(15): 155433.

[14]

Balu R., Zhong X., Pandey R., Karna S. P. App. Phys. Lett., 2012, 100(5): 052104.

[15]

Kim D., Hashmi Q., Hwang C., Hong J. Surf. Sci., 2013, 610(4): 27.

[16]

Ju L., Velasco J. Jr., Huang E., Kahn S., Nosiglia C., Tsai H. Z., Yang W., Taniguchi T., Watanabe K., Zhang Y., Zhang G., Crommie M., Zettl A., Wang F. Nat. Nanotech., 2014, 9(5): 348.

[17]

Becke A. D. Phys. Rev. A, 1988, 38(38): 3098.

[18]

Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Phys. Rev. B, 1992, 46(11): 6671.

[19]

Dovesi R., Orlando R., Erba A., Zicovich-Wilson C. M., Civalleri B., Casassa S., Maschio L., Ferrabone M., De La Pierre M., D’Arco P., Noel Y., Causa M., Rerat M., Kirtman B. Int. J. Quantum Chem., 2014, 114(19): 1287.

[20]

Peintinger M. F., Oliveira D. V., Bredow T. J. Comput. Chem., 2013, 34(6): 451.

[21]

Grimme S. J. Comput. Chem., 2006, 27(15): 1787.

[22]

Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. Hand-book of Mineralogy: Volume I: Elements, Sulfides, Sulfosalts, Miner-al Data Publishing, 1990.

[23]

Kern G., Kresse G., Hafner J. Phys. Rev. B, 1999, 59(13): 8551.

[24]

Orlando R., Lacivita V., Bast R., Ruud K. J. Chem. Phys., 2010, 132(24): 244106.

[25]

Constantinescu G., Kuc A., Heine T. Phys. Rev. Lett., 2013, 111(3): 036104.

[26]

Warner J. G., Rümmeli M. H., Bachmatiuk A., Büchner B. ACS Na-no, 2010, 4(3): 1299.

[27]

Marom N., Bernstein J., Garel J., Tkatchenko A., Joselevich E., Kro-nik L., Hod O. Phys. Rev. Lett., 2010, 105(4): 046801.

[28]

Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C., Zhi C. ACS Nano, 2010, 4(6): 2979.

[29]

Ferrero M., Rérat M., Kirtman B., Dovesi R. J. Chem. Phys., 2008, 129(24): 244110.

[30]

Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Dresselhaus M., Pala-cios T., Kong J. ACS Nano, 2012, 6(10): 8583.

[31]

Yu E. K., Stewart D. A., Tiwari S. Phys. Rev. B, 2008, 77(19): 195406.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/