One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance

Chen Wang , Yanshuang Meng , Lei Wang , Fuliang Zhu , Yue Zhang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 882 -886.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 882 -886. DOI: 10.1007/s40242-018-8073-6
Article

One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance

Author information +
History +
PDF

Abstract

Flower-shaped Co3O4 nanorods directly grown on nickel foam(Co3O4/NF) were prepared by one step hydrothermal method at low temperature. Co3O4 nanorods are directly connected with the nickel foam, and no binder is needed as an additive, so the Co3O4/NF electrode has good electrical conductivity. This flower-shaped structure makes larger surface area of Co3O4 nanorods that exposes to the electrolyte, thus promoting the redox reaction. The Co3O4/NF electrode shows a high specific capacitance of 2005.34 F/g at the current density of 0.5 A/g and a high capacitance retention of 98.0% after 5000 cycles. The high superior capacitive performance with high specific capacitance and the excellent cyclic performance indicate that the one step hydrothermal method has great potential application in supercapacitors.

Keywords

Supercapacitor / Co3O4/NF / Hydrothermal / Nanorod

Cite this article

Download citation ▾
Chen Wang, Yanshuang Meng, Lei Wang, Fuliang Zhu, Yue Zhang. One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance. Chemical Research in Chinese Universities, 2018, 34(6): 882-886 DOI:10.1007/s40242-018-8073-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller J R, Burke A F. Electrochem. Soc. Interface, 2008, 17: 53.

[2]

Wei T Y, Chen C H, Chen H C, Lu S Y, Hu C C. Adv. Mater., 2010, 22: 347.

[3]

Simon P, Gogotsi Y. Nature Materials, 2008, 7: 845.

[4]

Beguin F, Presser V, Balducci A, Frackowiak E. Adv. Mater., 2014, 26: 2219.

[5]

Miller J R, Simon P. Science Magazine, 2008, 321: 651.

[6]

Wang G, Zhang L, Zhang J. Chem. Soc. Rev., 2012, 41: 797.

[7]

Lin Y, Wei T, Chien H, Lu S. Advanced Energy Materials, 2011, 1: 901.

[8]

Yuan C, Zhang X, Su L, Gao B, Shen L. J. Mater. Chem., 2009, 19: 5772.

[9]

Wang B, Zhu T, Wu H B, Xu R, Chen J S, Lou X W. Nanoscale, 2012, 4: 2145.

[10]

Pan X, Chen X, Li Y, Yu Z. Electrochimica Acta, 2015, 182: 1101.

[11]

Zhou C, Zhang Y, Li Y, Liu J. Nano Lett., 2013, 13: 2078.

[12]

Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Chem. Commun.(Camb.), 2011, 47: 5786.

[13]

Yuan C, Yang L, Hou L, Shen L, Zhang F, Li D, Zhang X. J. Mater. Chem., 2011, 21: 18183.

[14]

Xia X, Tu J, Mai Y, Wang X, Gu C, Zhao X. J. Mater. Chem., 2011, 21: 9319.

[15]

Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou X W. Energy Environ. Sci., 2012, 5: 7883.

[16]

Xiong S, Yuan C, Zhang X, Xi B, Qian Y. Chemistry(Easton), 2009, 15: 5320.

[17]

Yuan C, Hou L, Yang L, Li D, Shen L, Zhang F, Zhang X. J. Mater. Chem., 2011, 21: 16035.

[18]

Kim I, Kim J, Lee Y, Kim K. J. Electrochem. Soc., 2005, 152: A2170.

[19]

Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J G. Chem. Sus. Chem., 2008, 1: 676.

[20]

Hu J, Zhong L, Song W, Wan L. Adv. Mater., 2008, 20: 2977.

[21]

Wu J B, Lin Y, Xia X H, Xu J Y, Shi Q Y. Electrochimica Acta, 2011, 56: 7163.

[22]

Qing X, Liu S, Huang K, Lv K, Yang Y, Lu Z, Fang D, Liang X. Electrochimica Acta, 2011, 56: 4985.

[23]

Gao Y, Chen S, Cao D, Wang G, Yin J. J. Power Sources, 2010, 195: 1757.

[24]

Feng C, Zhang J, Deng Y, Zhong C, Liu L, Hu W. Materials Science and Engineering B, 2015, 199: 15.

[25]

Duan B R, Cao Q. Electrochimica Acta, 2012, 64: 154.

[26]

Lu Z, Chang Z, Zhu W, Sun X. Chem. Commun.(Camb.), 2011, 47: 9651.

[27]

Li Y, Cao D, Wang Y, Yang S, Zhang D, Ye K, Cheng K, Yin J, Wang G, Xu Y. J. Power Sources, 2015, 279: 138.

[28]

Yang J, Lian L, Ruan H, Xie F, Wei M. Electrochimica Acta, 2014, 136: 189.

[29]

Wang N, Yao M, Zhao P, Zhang Q, Hu W. J. Solid State Electrochem., 2016, 20: 1429.

[30]

Yin J, Zhang H, Luo J, Yao M, Hu W. Journal of Materials Science: Materials in Electronics, 2016, 28: 2093.

[31]

Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G. Nanoscale, 2013, 5: 3793.

[32]

Gu J, Fan X, Liu X, Li S, Wang Z, Tang S, Yuan D. Chem. Eng. J., 2017, 324: 35.

[33]

Deng J, Kang L, Bai G, Li Y, Li P, Liu X, Yang Y, Gao F, Liang W. Electrochimica Acta, 2014, 132: 127.

[34]

Deng M J, Huang F L, Sun I W, Tsai W T, Chang J K. Nanotechnology, 2009, 20: 175602.

[35]

Lin C, Ritter J A, Popov B N. J. Electrochem. Soc., 1998, 145: 4097.

[36]

Srinivasan V, Weidner J W. J. Electrochem. Soc., 1997, 144: L210.

[37]

Ke Q, Tang C, Yang Z, Zheng M, Mao L, Liu H, Wang J. Electrochimica Acta, 2015, 163: 9.

[38]

Qorbani M, Naseri N, Moshfegh A Z. ACS Appl. Mater. Interfaces, 2015, 7: 11172.

[39]

Kong L, Lang J, Liu M, Luo Y, Kang L. J. Power Sources, 2009, 194: 1194.

[40]

Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y. Sci. Rep., 2014, 4: 5787.

[41]

Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T. ACS Appl. Mater. Interfaces, 2013, 5: 7405.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/