Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases

Jia Xu , Xiaoming Zhao , Ye Yuan , Yanhui Song , Jiaqi Wang , Chonghan Wang , Yujia Chen , Jianing Wang , Zhijun Yan , Shuwen Guan , Liping Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 934 -938.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 934 -938. DOI: 10.1007/s40242-018-8053-x
Article

Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases

Author information +
History +
PDF

Abstract

Peroxidase activity greatly impacts the maintenance of free radical homeostasis, and can prevent or treat diseases related to free radicals. Microperoxidase-11(MP-11) is created via hydrolysis of cytochrome c iron-porphyrin complexes. In these complexes, the heme iron is penta-coordinate with histidine and exhibits excellent antioxidant activity when decomposing hydrogen peroxide. In this study, we screened the Ph.D.-7 and Ph.D.-12 phage display peptide libraries and obtained ten small peptide ligands of deuterohemin(the vinyl groups of oxidized heme). Among these polypeptides, DhHP-7P1, 12P1, 12P2 and 12P6 have good enzymatic activity compared with MP-11, and exhibit activities up to 50% of MP-11. Based on the screened sequences, we designed a series of artificial microperoxidases and determined that a higher peroxidase activity could be achieved with an enzymatic active site containing a second site of histidine residue spaced between two arginine residues with an interval of two amino acids(Dh-XHRXXR).

Keywords

Microperoxidase-11 / Deuterohemin / Artificial microperoxidase / Enzymatic activity

Cite this article

Download citation ▾
Jia Xu, Xiaoming Zhao, Ye Yuan, Yanhui Song, Jiaqi Wang, Chonghan Wang, Yujia Chen, Jianing Wang, Zhijun Yan, Shuwen Guan, Liping Wang. Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases. Chemical Research in Chinese Universities, 2018, 34(6): 934-938 DOI:10.1007/s40242-018-8053-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang H. P., Qian S. Y., Schafer F. Q., Domann F. E., Oberley L. W., Buettner G. R. Free Radical Biology & Medicine, 2001, 30(8): 825.

[2]

Raes M., Michiels C., Remacle J. Free Radical Biology & Medicine, 1987, 3(1): 3.

[3]

Dianzani M. U. Boll. Soc. Ital. Biol. Sper., 1992, 68(8/9): 491.

[4]

Nakano Y., Asada K. Plant & Cell Physiology, 1981, 22(5): 867.

[5]

Badyal S. K., Eaton G., Mistry S., Pipirou Z., Basran J., Metcalfe C. L., Gumiero A., Handa S., Moody P. C., Raven E. L. Biochemistry, 2009, 48(22): 4738.

[6]

Raven E. L. Heme Peroxidases, 2013, Berlin, Heidelberg: Springer, 962.

[7]

Wang X., Tachikawa H., Yi X., Manoj K. M., Hager L. P. Journal of Biological Chemistry, 2003, 278(10): 7765.

[8]

Welinder K. G. Curr. Opi. Struct. Biol., 1992, 2(3): 388.

[9]

Ryabova E. S., Dikiy A., Hesslein A. E., Bjerrum M. J., Ciurli S., Nordlander E. Journal of Biological Inorganic Chemistry, 2004, 9(4): 385.

[10]

Franzen S., Boxer S. G., Dyer R. B., Woodruff W. H. Journal of Physical Chemistry B, 2000, 104(44): 10359.

[11]

Traylor T. G., Lee W. A., Stynes D. V. Oxidases & Related Redox Systems, 1984, 40(3): 553.

[12]

Quilez R., De L. S., Desfosses B., Mansuy D., Mahy J. P. Febs. Letters, 1996, 395(1): 73.

[13]

Bertini I., Turano P., Vila A. J. Journal of Clinical Microbiology, 1993, 47(4): 1225.

[14]

Huystee R. B. V. Structure, 1996, 4(3): 311.

[15]

Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Nature Structural Biology, 1997, 4(12): 1032.

[16]

Wirstam M., Siegbahn P. E. M. Journal of the American Chemical Society, 2000, 122(35): 8539.

[17]

Asada K. Physiologia Plantarum, 2010, 85(2): 235.

[18]

Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y. Journal of Experimental Botany, 2002, 53(372): 1305.

[19]

Davletova S., Rizshsky L., Liang H., Zhong S., Oliver D. J., Coutu J., Shulaev V., Schlauch K., Mittler R. The Plant Cell, 2005, 17(1): 268.

[20]

Tsou C. L. Biochemical Journal, 1951, 49(49): 512.

[21]

Aron J., Baldwin D. A., Marques H. M., Pratt J. M., Adams P. A. Journal of Inorganic Biochemistry, 1986, 27(4): 227.

[22]

Baldwin D. A., Marques H. M., Pratt J. M. Journal of Inorganic Biochemistry, 1987, 30(3): 203.

[23]

Galende P. P., Cuadrado N. H., Kostetsky E. Y., Roig M. G., Villar E., Shnyrov V. L., Kennedy J. F. International Journal of Biological Macromolecules, 2015, 81: 1005.

[24]

Deyhimi F., Nami F. International Journal of Chemical Kinetics, 2012, 44(10): 699.

[25]

Laszlo J. A., Compton D. L. Journal of Molecular Catalysis B: Enzymatic, 2002, 18(1): 109.

[26]

Reszka K. J., O’Malley Y., McCormick M. L., Denning G. M., Briti-gan B. E. Free Radical Biology & Medicine, 2004, 36(11): 1448.

[27]

Geysen H. M., Rodda S. J., Mason T. J. Molecular Immunology, 1986, 23(7): 709.

[28]

Pande J., Szewczyk M. M., Grover A. K. Biotechnology Advances, 2010, 28(6): 849.

[29]

Liu Y. L., Guo L., Roeske R., Luo G. M., Li W. Acta Scientiarium Naturalium Universitatis Jilinensis, 2001, 1(1): 91.

[30]

Zeng Y., Liu L., He J., Liu Y., Zhu C., You X., Wu Y. Canadian Journal of Microbiology, 2012, 58(7): 898.

[31]

Yang W. J., Lai J. F., Peng K. C., Chiang H. J., Weng C. N., Shiuan D. Journal of Immunological Methods, 2005, 304(1): 15.

[32]

Miyake C., Michihata F., Asada K. Plant & Cell Physiology, 1991, 32(1): 33.

[33]

Vuleta A., Jovanovic S. M., Tucic B. Plant Physiology & Biochemistry, 2016, 100: 166.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/