Au Nanoparticles Loaded on Hollow TiO2 Microspheres with (001) Exposed Facets: a Strategy for Promoting Photocatalytic Performance

Shumin Wang , Xiaoxia Yan , Yan Zhu , Dongmei Deng , Haibo He , Liqiang Luo

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 705 -710.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 705 -710. DOI: 10.1007/s40242-018-8047-8
Article

Au Nanoparticles Loaded on Hollow TiO2 Microspheres with (001) Exposed Facets: a Strategy for Promoting Photocatalytic Performance

Author information +
History +
PDF

Abstract

Au nanoparticles loaded TiO2 hollow microspheres with exposed (001) facets(Au-HTFs) were synthesized through template-free hydrothermal process combined with a chemical reduction role. Au-HTFs displayed excellent photocatalytic activity in catalyzing oxidization reaction in organic pollutant system, which originates from the synergistic effect of the reactive (001) facets and Au nanoparticles with a wide range of absorption in visible region based on localized surface plasmon resonance effect. The unique synergistic effect could largely increase the photocatalytic performance resulting from the improvements of both the visible light aborption and the recombination of electron-hole pairs. Our findings revealed that among Au-HTFs with different Au loading percentages, Au-HTFs with 2%(mass fraction) Au loading possessed the superior photocatalytic activity.

Keywords

Hollow TiO2 microsphere / Exposed facet / Gold nanoparticle / Photocatalysis

Cite this article

Download citation ▾
Shumin Wang, Xiaoxia Yan, Yan Zhu, Dongmei Deng, Haibo He, Liqiang Luo. Au Nanoparticles Loaded on Hollow TiO2 Microspheres with (001) Exposed Facets: a Strategy for Promoting Photocatalytic Performance. Chemical Research in Chinese Universities, 2018, 34(5): 705-710 DOI:10.1007/s40242-018-8047-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An H R, Park S Y, Huh J Y, Hong Y C. Appl. Catal. B: Environ., 2017, 211: 126.

[2]

Chen Y, Wang Y N, Li W Z, Ju M T. Appl. Catal. B: Environ., 2017, 210: 352.

[3]

Lin L Y, Nie Y, Kavadiya S, Soundappan T, Biswas P. Chem. Eng. J., 2017, 316: 449.

[4]

Yu C, Zhou W, Liu H, Liu Y, Dionysiou D D. Chem. Eng. J., 2016, 287: 117.

[5]

Dahl M, Liu Y D, Yin Y D. Chem. Rev., 2014, 114: 9853.

[6]

Liu G, Jimmy C Y, Lu G Q M, Cheng H M. Chem. Commun., 2011, 47: 6763.

[7]

Gong X Q, Selloni A. J. Phys. Chem. B, 2005, 109: 19560.

[8]

Wang Z, Lv K, Wang G, Deng K, Tang D. Appl. Catal. B: Envi-ron., 2010, 100: 378.

[9]

Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2011, 50: 2133.

[10]

Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. J. Am. Chem. Soc., 2007, 129: 8406.

[11]

Lv F J, Xiao S X, Zhu J, Li H X. RSC Adv., 2014, 4: 36206.

[12]

Zhu H Y, Chen X, Zheng Z F, Ke X B, Jaatinen E, Zhao J C, Guo C, Xie T F, Wang D J. Chem. Commun., 2009, 48: 7524.

[13]

Tian Y, Tatsuma T. J. Am. Chem. Soc., 2005, 127: 7632.

[14]

Zhang Z, Yates J T Jr. Chem. Rev., 2012, 112: 5520.

[15]

Lin F, Shao B, Li Z, Zhang J Y, Wang H, Zhang S H, Haruta M, Huang J H. Appl Catal B: Environ., 2017, 218: 480.

[16]

Cheng K, Sun W, Jiang H Y, Liu J J, Lin J. J. Phys. Chem. C, 2013, 117: 14600.

[17]

Miao J, Liu B. RSC Adv., 2013, 3: 1222.

[18]

Zhuang J D, Tian Q F, Zhou H, Liu Q, Liu P, Zhong H M. J. Mater. Chem., 2012, 22: 7036.

[19]

Yu J C, Yu J, Ho W, Jiang Z, Zhang L. Chem. Mater., 2002, 14: 3808.

[20]

Xing M Y, Yang B X, Yu H, Zhang J L. J. Phys. Chem. Lett., 2013, 4: 3910.

[21]

Zhu S, Liang S, Gu Q, Wang J X. Appl. Catal. B: Environ., 2012, 119: 146.

[22]

Sun C, Smith S C. J. Phys. Chem. C, 2012, 116: 3524.

[23]

Yang H G, Sun C H, Qiao S Z, Liu G. Nature, 2008, 453: 638.

[24]

Selloni A. Nat. Mater., 2008, 7: 613.

[25]

Xing M Y, Yang B X, Yu H, Zhang J L. J. Phys. Chem. Lett., 2013, 4: 3910.

[26]

Tian B, Zhang J, Tong T, Chen F. Appl. Catal. B: Environ., 2008, 79: 394.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/