Surface Properties and Etherification in Microemulsion Systems of Novel Brönsted Acid Surfactants

Mingqing Yang , Zhonglin Wei , Haifeng Duan , Yingjie Lin

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 440 -443.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 440 -443. DOI: 10.1007/s40242-018-8046-9
Article

Surface Properties and Etherification in Microemulsion Systems of Novel Brönsted Acid Surfactants

Author information +
History +
PDF

Abstract

Novel Brönsted acid-surfactants with different alkyl chains were synthesized via a two-step process, and their surface properties were studied. The critical micelle concentration(cmc), surface tension at the cmc(γ cmc), and ability of these compounds to lower the surface tension by 0.02 N/m(C 20 and pC 20) were investigated at 25 and 40 °C. The molecular architecture of the compounds strongly influenced these physicochemical parameters. The ability of these compounds to lower surface tension was found to be good. Etherification in microemulsions formed by these surfactants as well as dodecylbenzenesulfonic acid(DBSA) was performed; surfactants 3a and 3b were found to be much more efficient than DBSA.

Keywords

Brönsted acid surfactant / Microemulsion / Critical micelle concentration(cmc) / Etherification

Cite this article

Download citation ▾
Mingqing Yang, Zhonglin Wei, Haifeng Duan, Yingjie Lin. Surface Properties and Etherification in Microemulsion Systems of Novel Brönsted Acid Surfactants. Chemical Research in Chinese Universities, 2018, 34(3): 440-443 DOI:10.1007/s40242-018-8046-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Domínguez R., Rodríguez A., Maestre A., Robina I., Moyá M. L. J. Colloid Inter. Sci., 2012, 386(1): 228.

[2]

Mouraa E. F., Netoa A. O. W., Dantasa T. N., Júniora H. S., Gurgel A. Colloid. Surfaces A, 2009, 340: 199.

[3]

Chen J., Qiao M., Gao N., Ran Q., Wu S., Qi S. Colloid. Surface A, 2017, 522: 593.

[4]

Wang X., Li R., Li Z., Liu J. J. Colloid Inter. Sci., 2017, 505: 847.

[5]

Manabe K., Limura S., Sun X.M., Kobayashi S. J. Am. Chem. Soc., 2002, 124: 11971.

[6]

Limura S., Manabe K., Kobayashi S. Org. Lett., 2003, 5: 101.

[7]

Jang H., Lee H. Colloid. Surfaces A, 2018, 538: 574.

[8]

Menger F. M., Elringtn A. R. J. Am. Chem. Soc., 1991, 113: 9621.

[9]

Yin J. C., Chen Y. K., Jiang J. Z., Cui Z. G. Chem. J. Chinese Universities, 2017, 38(9): 1645.

[10]

Liu X., Xing X., Gao Z. Colloid. Surfaces A, 2014, 457: 374.

[11]

Dong D., Ouyang Y., Yu H., Liu Q., Liu J., Wang M., Zhu J. J. Org. Chem., 2005, 70: 4535.

[12]

Fernando Silva O., de Rossia Rita H. Mariano Correa N., RSC Adv., 2015, 5: 34878.

[13]

Jing L., Li X., Han Y., Chu Y. Colloid. Surface A, 2008, 326: 37.

[14]

Han Y., Chu Y. J. Mol. Catal. A: Chem., 2005, 273: 232.

[15]

Song K., Chu Y., Dong L., Song J., Wang D. J. Mol. Catal. A: Chem., 2008, 282: 144.

[16]

Malferrari D., Armenise N., Decessari S., Galletti P., Tagliavini E. ACS Sustain Chem. Eng., 2015, 3: 1579.

[17]

Wang X., Yan F., Li Z., Zhang L., Zhao S., An J., Yu J. Colloid. Surfaces A, 2007, 302: 532.

[18]

You A., Cao Y., Cao G. Chem. Res. Chinese Universities, 2017, 33(4): 525.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/