Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin

Xiaoxing Zeng , Xiaofeng Gong , Yiqun Wan , Ruyang He , Zhaodi Xu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 711 -718.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 711 -718. DOI: 10.1007/s40242-018-8035-z
Article

Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin

Author information +
History +
PDF

Abstract

BiOCl nanosheets with oxygen vacancies on the exposed {010} facets were assistant-synthesized by triethanolamine(TEOA) via hydrothermal method. We explored the surface properties, crystal structure, morphology and optical absorption ability of the prepared samples via various characterization technologies. The results indicate that the morphologies and microstructures of the obtained samples depend on the amount of TEOA in the synthesis. The addition of TEOA induces the production of oxygen vacancy on the surface of the samples. Therefore, the synthesized samples with TEOA-assistance hold higher photoactivity for the degradation of colorless antibiotic agent Ciprofloxacin(CIP) under visible light(λ⩾420 nm). The obtained sample upon the addition of 20 mL of TEOA exhibits the highest photocatalytic performance, which is nearly 14 times as high as that of the sample prepared without TEOA and twice as high as that of the prepared samples with NaOH or NH3·H2O. The possible degradation mechanism was discussed on the basis of the experiment results.

Keywords

BiOCl / Nanosheet / Exposed facet / Ciprofloxacin / Photocatalysis

Cite this article

Download citation ▾
Xiaoxing Zeng, Xiaofeng Gong, Yiqun Wan, Ruyang He, Zhaodi Xu. Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin. Chemical Research in Chinese Universities, 2018, 34(5): 711-718 DOI:10.1007/s40242-018-8035-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burda C., Chen X. B., Narayanan R., El-Sayed M. A. Chem. Rev., 2005, 105(4): 1025.

[2]

Peng L., Hu L. F., Fang X. S. Adv. Funct. Mater., 2014, 24(18): 2591.

[3]

Gu Y., Xu Z. D., Guo L., Wan Y. Q. Cryst. Eng. Comm., 2014, 16(48): 10997.

[4]

Han S. C., Hu L. F., Gao N., Al-Ghamdi A. A., Fang X. S. Adv. Funct. Mater., 2014, 24(24): 3725.

[5]

Xu Z. D., Li Y. X., Peng S. Q., Lu G. X., Li S. B. Cryst. Eng. Comm., 2011, 13(14): 4770.

[6]

Wan Y. Q., Wang X. F., Gu Y., Guo L., Xu Z. D. Appl. Surf. Sci., 2016, 366: 59.

[7]

Zhang H., Cai J. M., Wang Y. T., Wu M. Q., Meng M., Tian Y., Li X. G., Zhang J., Zheng L. R., Jiang Z. Appl. Catal. B: Environ., 2018, 220: 126.

[8]

Zhou X. X., Qu F. D., Zhang B. X., Jiang C. J., Yang M. H. Mater. Lett., 2017, 209: 618.

[9]

Feng J., Wang Y. T., Zou L. Y., Li B. W., He X. F., Liu S. N., Chen T. T., Fan Z. J., Ren Y. M., Lu Y. Z. Chem. Res. Chinese Universities, 2015, 31(3): 439.

[10]

Cui S., Li X. S., Li Y. J., Zhao H. X., Wang Y. Y., Li N., Li X. T., Li G. D. Chem. Res. Chinese Universities, 2017, 33(3): 436.

[11]

Zhang K. L., Liu C. M., Huang F. Q., Zheng C., Wang W. D. Appl. Catal. B: Environ., 2006, 68(3/4): 125.

[12]

Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q. Nature, 2008, 453(7195): 638.

[13]

Han X. G., Kuang Q., Jin M. S., Xie Z. X., Zheng L. S. J. Am. Chem. Soc., 2009, 131(9): 3152.

[14]

Liu M., Piao L. Y., Zhao L., Ju S. T., Yan Z. J., He T., Zhou C. L., Wang W. J. Chem. Commun., 2010, 46(10): 1664.

[15]

Chen J. W., Jiang H., Jin W. L., Shi C. K. Appl. Catal. B: Environ., 2016, 160: 698.

[16]

Xiao F., Jiang G. Q., Chen J. Y., Jiang Z. L., Liu X. Z., Osaka A., Ma X. C. J. Mater. Sci., 2018, 53(1): 285.

[17]

Liu J. C., Yu S. Y., Zhu W. Y., Yan X. L. Appl. Catal. A: Gen., 2015, 500: 30.

[18]

Yang Z. M., Jiang Y. H., Yu Q. H., Ding Y. H., Jiang Y., Yin J. R., Zhang P. J. Mater. Sci., 2017, 52(23): 13586.

[19]

Wei R. J., Zhou X. L., Zhou T. F., Hu J. C., Ho J. C. J. Phys. Chem. C, 2017, 121(35): 19002.

[20]

Yamazoe S., Koyasu K., Tsukuda T. Accounts Chem. Res., 2014, 47(3): 816.

[21]

Zang C. J., Zhang X. S., Hu S. Y., Chen F. Appl. Catal. B: Environ., 2017, 216: 106.

[22]

Yu J. C. C., Nguyen V. H., Lasek J., Wu J. C. S. Appl. Catal. B: Environ., 2017, 219: 391.

[23]

Ye L. Q., Zan L., Tian L. H., Peng T. Y., Zhang J. J. Chem. Commun., 2011, 47(24): 6951.

[24]

Truong Q. D., Hoa H. T., Le T. S. J. Colloid. Interf. Sci., 2017, 504: 223.

[25]

Peng F. P., Zhou Q., Lu C. H., Ni Y. R., Kou J. H., Xu Z. Z. Appl. Surf. Sci., 2017, 394: 115.

[26]

Chen S. L., Li D., Liu Y. X., Huang W. X. J. Catal., 2016, 341: 126.

[27]

Sang W. J., Zhang G., Lan H. C., An X. Q., Liu H. J. Electrochim. Acta, 2017, 231: 429.

[28]

Zhao K., Zhang L. Z., Wang J. J., Li Q. X., He W. W., Yin J. J. J. Am. Chem. Soc., 2013, 135(42): 15750.

[29]

Yaremchenko A. A., Populoh S., Patricio S. G., Macias J., Thiel P., Fagg D. P., Weidenkaff A., Frade J. R., Kovalevsky A. V. Chem. Mater., 2015, 27(14): 4995.

[30]

Liu M., Li H. M., Wang W. J. Catal. Today, 2016, 264: 236.

[31]

Pan X. Y., Yang M. Q., Fu X. Z., Zhang N., Xu Y. J. Nanoscale, 2013, 5(9): 3601.

[32]

Wang Y., Wang B. J., Xu Y., Fang M., Wu Z. Y., Zhu W. J., Hong J. H., Li C. J. Chin. Chem. Soc., 2017, 64(2): 188.

[33]

Bachman R. E., Whitmire K. H., Thurston J. H., Gulea A., Stavila O., Stavila V. Inorg. Chim., 2003, 346: 249.

[34]

Jiang J., Zhao K., Xiao X. Y., Zhang L. Z. J. Am. Chem. Soc., 2012, 134(10): 4473.

[35]

Li J., Zhang L. Z., Li Y. J., Yu Y. Nanoscale, 2014, 6(1): 167.

[36]

Hancock R. D., Cukrowski I., Baloyi J., Mashishi J. J. Chem. Soc. Dalton, 1993, 19: 2895.

[37]

Poppl A., Volkel G., Esr P. Phys. Status Solidi A, 1991, 125(2): 571.

[38]

Batzill M., Morales E. H., Diebold U. Chem. Phys., 2007, 339(1–3): 36.

[39]

Rath C., Mohanty P., Pandey A. C., Mishra N. C. J. Phys. D: Appl. Phys., 2009, 42(20): 205101.

[40]

Park S. M., Ikegami T., Ebihara K. Thin Solid Films, 2006, 513(1/2): 90.

[41]

Cui N. Y., Brown N. M. D., McKinley A. Appl. Surf. Sci., 2000, 158(1/2): 104.

[42]

Wang J. P., Wang Z. Y., Huang B. B., Ma Y. D., Liu Y. Y., Qin X. Y., Zhang X. Y., Dai Y. ACS Appl. Mater. Inter., 2012, 4(8): 4024.

[43]

Kwo J., Wertheim G. K., Gurvitch M., Buchanan D. N. E. Appl. Phys. Lett., 1982, 40(8): 675.

[44]

Tan S. J., Ji Y. F., Zhao Y., Zhao A. D., Wang B., Yang J. L., Hou J. G. J. Am. Chem. Soc., 2011, 133(6): 2002.

[45]

Li H., Li J., Ai Z. H., Jia F. L., Zhang L. Z. Angew. Chem. Int. Ed., 2017, 57(1): 17.

[46]

Serpone N. J. Phys. Chem. B, 2006, 110(48): 24287.

[47]

Nagaveni K., Hegde M. S., Madras G. J. Phys. Chem. B, 2004, 108(52): 20204.

[48]

Li Y. X., Hu Y. F., Peng S. Q., Lu G. X., Li S. B. J. Phys. Chem. C, 2009, 113(21): 9352.

[49]

Fan H. M., Jiang T. F., Li H. Y., Wang D. J., Wang L. L., Zhai J. L., He D. Q., Wang P., Xie T. F. J. Phys. Chem. C, 2012, 116(3): 2425.

[50]

Zeng X. X., Wan Y. Q., Gong X. F., Xu Z. D. RSC Adv., 2017, 7: 36269.

[51]

Bendjabeur S., Zouaghi R., Kaabeche O. N. H., Sehili T. Int. J. Chem. React. Eng., 2017, 15(4): 0206.

[52]

Khakpash N., Simchi A., Jafari T. J. Mater. Sci.: Mater. El., 2012, 23(3): 659.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/