A Simple, Low-cost Method to Fabricate Drag-reducing Coatings on a Macroscopic Model Ship

Zhipeng Wang , Songsong Zhang , Shan Gao , Xiao Ouyang , Jie Li , Rui Li , Hao Wei , Zhijun Shuai , Wanyou Li , Shanshan Lyu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 616 -621.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 616 -621. DOI: 10.1007/s40242-018-8032-2
Article

A Simple, Low-cost Method to Fabricate Drag-reducing Coatings on a Macroscopic Model Ship

Author information +
History +
PDF

Abstract

A low-cost method was used to fabricate superhydrophobic coatings on a macroscopic model ship and the drag-reducing effect was investigated at both low and high speed. Hierarchical structures of the superhydrophobic copper coatings were characterized by means of scanning electron microscopy(SEM) and X-ray diffraction(XRD). Drag coefficient tests on surfaces with different wettability(superhydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces) showed that the as-prepared superhydrophobic surface exhibited a high remarkable drag reduction of 81% at a low speed of 1 mm/s. In the drag-reducing tests with model ship, the superhydrophobic coatings also exhibited around 16% drag reduction at a velocity of 0.3 m/s.

Keywords

Low-cost superhydrophobic coating / Wettability / Water adhesive force / Drag reduction / Drag coefficient

Cite this article

Download citation ▾
Zhipeng Wang, Songsong Zhang, Shan Gao, Xiao Ouyang, Jie Li, Rui Li, Hao Wei, Zhijun Shuai, Wanyou Li, Shanshan Lyu. A Simple, Low-cost Method to Fabricate Drag-reducing Coatings on a Macroscopic Model Ship. Chemical Research in Chinese Universities, 2018, 34(4): 616-621 DOI:10.1007/s40242-018-8032-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kramer M. O. J. Am. Soc. Nav. Eng., 1960, 72: 25.

[2]

Virk P. S. AIChE Journal, 1975, 21: 625.

[3]

Anshuman R., Alexander M., Wim V. S. Phys. Rev. Lett., 2006, 97: 234501.

[4]

Ferhat H., Sylvain G. Int. J. Eng. Sci. Tech., 2010, 2: 6876.

[5]

Mohsenipour A. A., Pal R. Ind. Eng. Chem. Res., 2013, 52: 1291.

[6]

Bixler G. D., Bhushan B. J. Colloid Interface Sci., 2013, 393: 384.

[7]

García-Mayoral R., Jiménez J. Phil. Trans. R. Soc. A, 2011, 369: 1412.

[8]

Xu S., Rempfer D., Lumley J. T. J. Fluid Mech., 2003, 478: 11.

[9]

Favier J., Dauptain A., Basso D., Bottaro A. J. Fluid Mech., 2009, 627: 451.

[10]

Victor S. L., Anna P., Itamar P., Vasil T. Phys. Rev. Lett., 2005, 94: 174502.

[11]

Ceccio S. L. Annu. Rev. Fluid Mech., 2010, 42: 183.

[12]

Jagdish B. N., Brandon T. Z. X., Kwee T. J., Dev A. K. J. Ship Res., 2014, 58: 30.

[13]

Vakarelski I. U., Chanb D. Y. C., Thoroddsen S. T. Soft Matter, 2014, 10: 5662.

[14]

McCormick M. E., Bhattacharyya R. Nav. Eng. J., 1973, 85: 406.

[15]

Cottin-Bizonne C., Barrat J. L., Bocquet L., Charlaix E. Nat. Mater., 2003, 2: 237.

[16]

Olin P., Lindström S. B., Pettersson T., Wåberg L. Langmuir, 2013, 29: 9079.

[17]

McHale G., Flynn M. R., Newton M. I. Soft Matter, 2011, 7: 10100.

[18]

Rothstein J. P. Annu. Rev. Fluid Mech., 2010, 42: 89.

[19]

Mohamed A. S., Hooman V. T., Mohamed G. Phys. Fluids, 2011, 23: 012001.

[20]

Fukagata K., Kasagi N. A. Phys. Fluids, 2006, 18: 051703.

[21]

Watanabe K., Udagawa Y., Udagawa H. J. Fluid Mech., 1999, 381: 225.

[22]

Bixler G. D., Bhushan B. Nanoscale, 2014, 6: 76.

[23]

Lee C., Kim C. J. Phys. Rev. Lett., 2011, 106: 014502.

[24]

Wu Y., Liu Z., Liang Y., Pei X., Zhou F., Xue Q. Soft Matter, 2014, 10: 5318.

[25]

Ou J., Rothstein J. P. Phys. Fluids, 2005, 17: 103606.

[26]

Truesdell R., Mammoli A., Vorobieff P., Swol F. V., Brinker C. J. Phys. Rev. Lett., 2006, 97: 044504.

[27]

Shi F., Niu J., Liu J., Liu F., Wang Z., Feng X., Zhang X. Adv. Mater., 2007, 19: 2257.

[28]

Dong H., Cheng M., Zhang Y., Wei H., Shi F. J. Mater. Chem. A, 2013, 1: 5886.

[29]

Zhang S., Ouyang X., Li J., Gao S., Han S., Liu L., Wei H. Lang-muir, 2015, 31: 587.

[30]

Kim J. G., Choi H. J., Park K. C., Cohen R. E., McKinley G. H., Barbastathis G. Small, 2014, 10: 2487.

[31]

Liu T., Kim C. J. Science, 2014, 346: 1096.

[32]

Zhang X., Shi F., Yu X., Liu H., Fu Y., Wang Z., Jiang L., Li X. J. Am. Chem. Soc., 2004, 126: 3064.

[33]

Lai Y., Lin C., Huang J., Zhuang H., Sun L., Nguyen T. Langmuir, 2008, 24: 3867.

[34]

Xiao M., Jiang C., Shi F. NPG Asia Mater., 2014, 6: e128.

[35]

Song M., Cheng M., Ju G., Zhang Y., Shi F. Adv. Mater., 2014, 26: 7059.

[36]

Jung Y. C., Bhushan B. ACS Nano, 2009, 3: 4155.

[37]

Wang N., Xiong D., Deng Y., Shi Y., Wang K. ACS Appl. Mater. In-terfaces, 2015, 7: 6260.

[38]

Zhu X., Zhang Z., Men X., Yang J., Xu X. ACS Appl. Mater. Inter-faces, 2010, 2: 3636.

[39]

Cheng Z., Hou R., Du Y., Lai H., Fu K., Zhang N., Sun K. ACS Appl. Mater. Interfaces, 2013, 5: 8753.

[40]

Chen X., Kong L., Dong D., Yang G., Yu L., Chen J., Zhang P. J. Phys. Chem. C, 2009, 113: 5396.

[41]

Cheng M., Song M., Dong H., Shi F. Small, 2015, 11: 1665.

[42]

Cassie A. B. D., Baxter S. Trans. Faraday Soc., 1944, 40: 546.

[43]

Vakarelski I. U., Marston J. O., Chan D. Y. C. Phys. Rev. Lett., 2011, 106: 214501.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/