Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster

Xiuqing Ren , Xuemei Fu , Xinzhang Lin , Chao Liu , Jiahui Huang , Jinghui Yan

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 719 -722.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 719 -722. DOI: 10.1007/s40242-018-8027-z
Article

Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster

Author information +
History +
PDF

Abstract

We reported the synthesis of Au130(SPh-Br)50(Br-Ph-SH=4-bromothiophenol) nanocluster with high purity and high yield via “size focusing” and “ligand exchange” processes. The time of synthetic process was significantly reduced compared with previous synthetic routine. Au130(SPh-Br)50 was determined by UV-Vis absorption spectros-copy and matrix-assisted laser desorption ionization(MALDI) mass spectroscopy. Thermo-gravimetric analysis (TGA) and size-exclusion chromatogram(SEC) analyses confirmed the purity of Au130(SPh-Br)50. The yield of gold nanoc-lusters was 20%(based on HAuCl4).

Keywords

Au130 / Gold nanocluster / Thiolate ligand

Cite this article

Download citation ▾
Xiuqing Ren, Xuemei Fu, Xinzhang Lin, Chao Liu, Jiahui Huang, Jinghui Yan. Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster. Chemical Research in Chinese Universities, 2018, 34(5): 719-722 DOI:10.1007/s40242-018-8027-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kurashige W., Niihori Y., Sharma S., Negishi Y. Coordin. Chem. Rev., 2016, 320: 238.

[2]

Knoppe S., Burgi T. Acc. Chem. Res., 2014, 47: 1318.

[3]

Maity P., Xie S. H., Yamauchi M., Tsukuda T. Nanoscale, 2012, 4: 4027.

[4]

Tsukuda T. Bull. Chem. Soc. Jpn., 2012, 85: 151.

[5]

Jin R., Zeng C., Zhou M., Chen Y. Chem. Rev., 2016, 116: 10346.

[6]

Daniel M., Astruc D. Chem. Rev., 2004, 104: 293.

[7]

Yuan X., Luo Z., Yu Y., Yao Q., Xie J. Chem-Asian J., 2013, 8: 858.

[8]

Kang X., Wang S., Song Y., Jin S., Sun G., Yu H., Zhu M. Angew. Chem. Int. Ed., 2016, 55: 3611.

[9]

Yao Q., Yuan X., Yu Y., Yu Y., Xie J., Lee J. J. Am. Chem. Soc., 2015, 137: 2128.

[10]

Kumar S., Jin R. Nanoscale, 2012, 4: 4222.

[11]

Russier-Antoine I., Bertorelle F., Vojkovic M., Rayane D., Salmon E., Jonin C., Dugourd P., Antoine R., Brevet P. Nanoscale, 2014, 6: 13572.

[12]

Zhu M., Aikens C., Hendrich M., Gupta R., Qian H., Schatz G., Jin R. J. Am. Chem. Soc., 2009, 131: 2490.

[13]

Wallace W., Wyrwas R., Whetten R., Mitric R., Bonacic-Koutecky V. J. Am. Chem. Soc., 2003, 125: 8408.

[14]

Negishi Y., Mizuno M., Hirayama M., Omatoi M., Takayama T., Iwase A., Kudo A. Nanoscale, 2013, 5: 7188.

[15]

Li G., Abroshan H., Liu C., Zhuo S., Li Z., Xie Y., Kim H. J., Rosi N. L., Jin R. ACS Nano, 2016, 10: 7998.

[16]

Chen H., Liu C., Wang M., Zhang C., Li G., Wang F. Chin. J. Catal., 2016, 37: 1787.

[17]

Yoon B., Hakkinen H., Landman U., Worz A. S., Antonietti J. M., Abbet S., Judai K., Heiz U. Science, 2005, 307: 403.

[18]

Schmid G. Chem. Soc. Rev., 2008, 37: 1909.

[19]

Alvarez M., Chen J., Plascencia-Villa G., Black D., Griffith W., Garzon I., Jose-Yacaman M., Demeler B., Whetten R. J. Phys. Chem. B, 2016, 120: 6430.

[20]

Luo Z., Zheng K., Xie J. Chem. Commum., 2014, 50: 5143.

[21]

Yang X., Yang M., Pang B., Vara M., Xia Y. Chem. Rev., 2015, 115: 10410.

[22]

Zheng K., Setyawati M., Leong D., Xie J. ACS Nano, 2017, 11: 6904.

[23]

Goswami N., Luo Z., Yuan X., Leong D., Xie J. Mater. Horiz., 2017, 4: 817.

[24]

Jin R., Qian H., Wu Z., Zhu Y., Zhu M., Mohanty A., Garg N. J. Phys. Chem. Lett., 2010, 1: 2903.

[25]

Akola J., Walter M., Whetten R. L., Hakkinen H., Gronbeck H. J. Am. Chem. Soc., 2008, 130: 3756.

[26]

Heaven M., Dass A., White P., Holt K., Murray R. J. Am. Chem. Soc., 2008, 130: 3754.

[27]

Qian H., Eckenhoff W. T., Zhu Y., Pintauer T., Jin R. J. Am. Chem. Soc., 2010, 132: 8280.

[28]

Liu C., Li T., Li G., Nobusada K., Zeng C., Pang G., Rosi N. L., Jin R. Angewa. Chem. Int. Ed., 2015, 54: 9826.

[29]

Chen Y., Zeng C., Liu C., Kirschbaum K., Gayathri C., Gil R., Rosi N., Jin R. J. Am. Chem. Soc., 2015, 137: 10076.

[30]

Negishi Y., Sakamoto C., Ohyama T., Tsukuda T. J. Phys. Chem. Lett., 2012, 3: 1624.

[31]

Dass A., Theivendran S., Nimmala P., Kumara C., Jupally V., Fortu-nelli A., Sementa L., Barcaro G., Zuo X., Noll B. J. Am. Chem. Soc., 2015, 137: 4610.

[32]

Zeng C., Chen Y., Das A., Jin R. J. Phys. Chem. Lett., 2015, 6: 2976.

[33]

Zeng C., Liu C., Pei Y., Jin R. ACS Nano, 2013, 7: 6138.

[34]

Black D., Bhattarai N., Whetten R., Bach S. J. Phys. Chem. A, 2014, 118: 10679.

[35]

Chakraborty I., Pradeep T. Chem. Rev., 2017, 117: 8208.

[36]

Liu C., Lin J., Shi Y., Li G. Nanoscale, 2015, 7: 5987.

[37]

Tang Z., Robinson D. A., Bokossa N., Xu B., Wang S., Wang G. J. Am. Chem. Soc., 2011, 133: 16037.

[38]

Jupally V., Dass A. Phys. Chem. Chem. Phys., 2014, 16: 10473.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/