Adsorption Mechanism of Composite Whisker on Copper Ions and Lead Ions

Juan Liu , Wenjing Xue , Yongchao Bao , Wanyi Cheng

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 792 -797.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 792 -797. DOI: 10.1007/s40242-018-8015-3
Article

Adsorption Mechanism of Composite Whisker on Copper Ions and Lead Ions

Author information +
History +
PDF

Abstract

A new kind of inorganic composite adsorbent based on chitin whiskers(CHW) and potassium tetratitanate whiskers(PTW) was synthesized via the thermal deposition to remove Cu2+ and Pb2+ from wastewater. CHW could be successfully coated on the surface of PTW when thermal treated 8 times. The adsorption process was better fitted with the Langmuir and Freundlich models. The adsorption process was more conformed to the Pseudo-second-order model. The results from XPS(X-ray photoelectron spectrum) further show that the adsorption mechanism between CHW-PTW and Cu2+, Pb2+ are both ion exchange and chemical adsorption. Thermodynamic parameters suggest that the adsorption processes are nonspontaneous. The adsorption of Cu2+ and Pb2+ is endothermic and exothermic, respectively.

Keywords

Potassium tetratitanate whisker / Chitin whisker / Adsorption / Mechanism

Cite this article

Download citation ▾
Juan Liu, Wenjing Xue, Yongchao Bao, Wanyi Cheng. Adsorption Mechanism of Composite Whisker on Copper Ions and Lead Ions. Chemical Research in Chinese Universities, 2018, 34(5): 792-797 DOI:10.1007/s40242-018-8015-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Juang R. S., Shao H. J. Adsorption, 2002, 8(1): 71.

[2]

Ngah W. S. W., Fatinathan S. Chem. Eng. J., 2008, 143(1): 62.

[3]

Alyüz B., Veli S. J. Hazard. Mater., 2009, 167(1—3): 482.

[4]

Zhang A. Y., Akashi T., Zhang B. P., Goto T. Mater. Lett., 2006, 60(23): 2834.

[5]

Cheung P. J. F., McKay C. W. G. Sep. Purif. Technol., 2000, 19(1/2): 55.

[6]

Bae S. D., Sagehashi M., Sakoda A. J. Membr. Sci., 2005, 252(1/2): 155.

[7]

Park J. J. Alloys Compd., 2010, 492(1): L57.

[8]

Jiménez S., MicóM M., Arnaldosa M. J. Water Pro. Eng., 2017, 19: 248.

[9]

Zhou D., Zhang L., Guo S. Water Res., 2005, 39(16): 3755.

[10]

L., Jiang X., Jia L. Chem. Res. Chinese Universities, 2017, 33(1): 112.

[11]

Zahra A. A., Mehdi I. Chem. Res. Chinese Universities, 2017, 33(2): 318.

[12]

Guan W., Pan J., Ou H., Wang X., Zou X., Hu W., Li C., Wu X. Chem. Eng. J., 2011, 167(1): 215.

[13]

Tan S., Zhang Y., Gong H. J. Water Environ. Technol., 2007, 5(1): 13.

[14]

González M. Á A. A., Gorokhovsky A. V., Elguezabal A. A. Mater. Sci. Eng. B, 2010, 174(1—3): 105.

[15]

Li C. X., Zhang X. J., Pan J. M., Xu P. P., Liu Y., Yan Y. S., Zhang Z. L. Adsorpt. Sci. Technol., 2009, 27(9): 845.

[16]

Chui V., Mok K., Ng C., Luong B., Ma K. Environ. Int., 1996, 22(4): 463.

[17]

Sag Y., Aktay Y. Pro. Biochem., 2000, 36(1/2): 157.

[18]

Shao J., Yang Y., Shi C. J. Appl. Polym. Sci., 2003, 88(11): 2575.

[19]

Gyliene O., Rekertas R., Šalkauskas M. Water Res., 2002, 36(16): 4128.

[20]

Liu J., Li Q. G., Zhang C. P. 2016 International Workshop on Material Science and Environmental Engineering, 2016.

[21]

Liu J., Li Q. G., Xue W. J. Materials, 2017, 44(10): 743.

[22]

Son E. B., Poo K. M., Chang J. S. Sci. Total Environ., 2018, 615: 161.

[23]

Tang H., Zhou W., Lu A., Zhang L. J. Mater. Sci., 2014, 49(1): 123.

[24]

Asheh S. A., Banat F., Omari R. A., Duvnjak Z. Chemosphere, 2000, 41(5): 659.

[25]

Papageorgiou S. K., Katsaros F. K., Kouvelos E. P., Nolan J. W., Deit H. L., Kanellopoulos N. K. J. Hazard. Mater., 2006, 137(3): 1765.

[26]

Karthikeyan T., Rajgopal S., Miranda L. R. J. Hazard. Mater., 2005, 124(1—3): 192.

[27]

Zhou J., Wu P., Dang Z., Zhu N., Li P., Wu J., Wang X. Chem. Eng. J., 2010, 162(3): 1035.

[28]

Ngah W. W., Kamari A., Koay Y. Int. J. Biol. Macromol., 2004, 34(3): 155.

[29]

Ngah W. W., Hanafiah M. Biochem. Eng. J., 2008, 39(3): 521.

[30]

Ozcan A., Ozcan A. S., Tunali S., Akar T., Kiran I. J. Hazard. Mater., 2005, 124(1—3): 200.

[31]

Ali S. B., Jaouali I., Najar S. S., Ouederni A. J. Cleaner Production, 2017, 142: 3809.

[32]

Adebisi G. A., Chowdhury Z. Z., Alaba P. A. J. Cleaner Production, 2017, 148: 958.

[33]

Yan T., Luo X., Lin X., Yang J. Colloids Surf. A, 2017, 512: 7.

[34]

Szlachta M., Chubar N. Chem. Eng. J., 2013, 217(1): 159.

[35]

Liu T., Han X., Wang Y. J. Colloid Interface Sci., 2017, 508: 405.

[36]

Wu R. X., Zheng G. F., Li W. W. J. Nanosci. Nanotechnol., 2018, 18: 5624.

[37]

Lalchhingpuii, Diwakar T. Lalhmunsiama, Chem. Eng. J., 2017, 328: 434.

[38]

Mustafa S., Shah K., Naeem A., Waseem M., Tahir M. J. Hazard. Mater., 2008, 160(1): 1.

[39]

Sara S., Amir Reza A., Abbas M. Chem. Res. Chinese Universities, 2017, 33(3): 471.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/