Porous Organic Frameworks-derived Porous Carbons with Outstanding Gas Adsorption Performance

Tingting Yan , Guolong Xing , Saikat Das , Teng Ben , Shilun Qiu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 338 -343.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 338 -343. DOI: 10.1007/s40242-018-8014-4
Article

Porous Organic Frameworks-derived Porous Carbons with Outstanding Gas Adsorption Performance

Author information +
History +
PDF

Abstract

A series of porous carbon materials was synthesized via high temperature pyrolysis from well-defined and thermally stable precursors, namely porous organic frameworks(POFs), in inert atmosphere. The porous carbon materials showed enhanced gas adsorption capacities together with increased heat of adsorption and stronger affinity between the frameworks and the gases as compared to the precursor materials. To exemplify, sample C-POF-TBBP-1000 with a high BET surface area of 1290 m2/g can adsorb 2.8 mmol/g CH4(273 K, 101.325 kPa), 5.4 mmol/g CO2(273 K, 101.325 kPa) and 2.2% H2(mass fraction, 77 K, 101.325 kPa), thereby surpassing most other porous adsorbent materials reported till date. The study highlights the potential of porous carbons derived from novel porous organic framework structures for gas adsorption applications.

Keywords

Porous organic framework / Gas adsorption / Pyrolysis / Porous carbon

Cite this article

Download citation ▾
Tingting Yan, Guolong Xing, Saikat Das, Teng Ben, Shilun Qiu. Porous Organic Frameworks-derived Porous Carbons with Outstanding Gas Adsorption Performance. Chemical Research in Chinese Universities, 2018, 34(3): 338-343 DOI:10.1007/s40242-018-8014-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rochelle G. T. Science, 2009, 325(5948): 1652.

[2]

Das S., Heasman P., Ben T., Qiu S. L. Chem. Rev., 2017, 117(3): 1515.

[3]

Côté P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M. Science, 2005, 310(5751): 1166.

[4]

Liu Y. Z., Ma Y. H., Zhao Y. B., Sun X. X., Gándara F., Furakawa H., Liu Z., Zhu C. H., Suenaga K., Oleynikov P., Alshammari A. S., Zhang X., Terasaki O., Yaghi O. M. Science, 2016, 351(6271): 365.

[5]

Ding S. Y., Wang W. Chem. Soc. Rev., 2013, 42(2): 548.

[6]

Pei C. Y., Ben T., Qiu S. L. Materials Horizons, 2015, 2(1): 11.

[7]

Ben T., Ren H., Ma S. Q., Cao D. P., Lan J. H., Jing X. F., Wang W. C., Xu J., Deng F., Simmons M. J., Qiu S. L., Zhu G. S. Angew. Chem. Int. Ed., 2009, 48(50): 9457.

[8]

Ben T., Qiu S. Cryst. Eng. Comm., 2013, 15(1): 17.

[9]

Xu S. J., Luo Y. L., Tan B. Macromol. Rapid Commun., 2013, 34(6): 471.

[10]

Jiang J. X., Trewin A., Adams D. J., Cooper A. I. Chem. Sci., 2011, 2(9): 1777.

[11]

Ben T., Li Y. Q., Zhu L. K., Zhang D. L., Cao D. P., Xiang Z. H., Yao X. D., Qiu S. L. Energy. Environ. Sci., 2012, 5(8): 8370.

[12]

Fu J. R., Saikat D., Xing G. L., Ben T., Valtchev V., Qiu S. L. J. Am. Chem. Soc., 2016, 138(24): 7673.

[13]

Li H., Pan Q. Y., Ma Y. C., Guan X. Y., Xue M., Fang Q. R., Valthev V., Qiu S. L. J. Am. Chem. Soc., 2016, 138(44): 14783.

[14]

Zhu Y. W., Murali S., Stoller M. D., Ganesh K. J., Cai W. W., Ferreira P. J., Pirkle A., Wallance R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Science, 2011, 332(6037): 1537.

[15]

Li Y. Q., Roy S., Ben T., Xu S. X., Qiu S. L. Phys. Chem. Chem. Phys., 2014, 16(25): 12909.

[16]

Dong Y., Das S., Zhu L. K., Ben T., Qiu S. L. J. Mater. Chem. A, 2016, 4(48): 18822.

[17]

Lu W. G., Yuan D. Q., Sculley J. L., Zhao D., Krishna R., Zhou H. C. J. Am. Chem. Soc., 2011, 133(45): 18126.

[18]

Lu W. G., Sculley J. P., Yuan D. Q., Krishna R., Wei Z. W., Zhou H. C. Angew. Chem., 2012, 51(30): 7480.

[19]

Li Y. Q., Ben T., Zhang B. Y., Fu Y., Qiu S. L. Sci. Rep., 2013, 3: 2420.

[20]

Lee J. M., Briggs M. E., Hasell T., Cooper A. I. Adv. Mater., 2016, 28(44): 9804.

[21]

Ren H., Ben T., Sun F. X., Guo M. Y., Jing X. F., Ma H. P., Cai K., Qiu S. L. J. Mater. Chem., 2011, 21(28): 10348.

[22]

Xu Y. H., Jiang D. L. Chem. Commun., 2014, 50(21): 2781.

[23]

Yan T. T., Xing G. L., Ben T., Qiu S. L., Chem J. Chinese Universi-ties, 2018, 39(5): 1072.

[24]

Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G. Nano Lett., 2009, 9(5): 1752.

[25]

Cuesta A., Dhamelincourt P., Laureyns L., Alonso M. A., Tascon J. M. D. J. Mater. Chem., 1998, 8(12): 2875.

[26]

Ferrari A. C., Basko D. M. Nat. Nanotechnol., 2013, 8(4): 235.

[27]

Zhao W. X., Han S., Zhuang X. D., Zhang F., Mai Y. Y., Feng X. L. J. Mater. Chem. A, 2015, 3(46): 23352.

[28]

Wang J., Krishna R., Yang J. F., Deng S. G. Environ. Sci. Technol., 2015, 49(15): 9364.

[29]

Li T., Rosi N. L. Chem. Commun., 2013, 49(97): 11385.

[30]

Lau C. H., Baatmao R., Hill M. R. Chem. Commun., 2013, 49(35): 3634.

[31]

Ratvijitvech T., Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I. Polymer, 2014, 55(1): 321.

[32]

Li Y. Q., Ben T., Qiu S. L. Acta Chim. Sinica, 2015, 73(6): 605.

[33]

Zhao Y. F., Yao K. X., Teng B. Y., Zhang T., Han Y. Energy Environ. Science, 2013, 6(12): 3684.

[34]

Dybtsev D. N., Chun H., Yoon S. H., Kim D. W., Kim K. J. Am. Chem. Soc., 2004, 126(1): 32.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/