Modulation of Supramolecular Interactions of Urea-based Supramolecular Polymers via Molecular Structures

Zhiyi Lu , Liming Tang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 849 -856.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 849 -856. DOI: 10.1007/s40242-018-8006-4
Article

Modulation of Supramolecular Interactions of Urea-based Supramolecular Polymers via Molecular Structures

Author information +
History +
PDF

Abstract

Linear bis-urea D230 series and branched tris-urea T403 series of supramolecular monomers were synthesized using low molecular weight polyetheramine D230, T403 and isocyanates with diverse functional groups. Rheological tests reveal that the materials possess special thermal and mechanical properties due to the strong hydrogen bonding interactions between terminal urea groups and the high flexibility of the polyetheramine middle segments. By enhancing the hydrogen bonding interactions through electronic effects of the substituted urea groups, the mechanical properties of the bulk material can be increased. Moreover, the branched T403 series with higher hydrogen bonding density also shows better performance against D230 series with the same substituted urea groups. The presence of π-π stacking between the phenyl groups in samples with phenylurea residues, which complements the hydrogen bonding, was also confirmed by fluorescence spectroscopy, therefore resulting in a stronger supramolecular polymer network.

Keywords

Urea / Hydrogen bonding / π-π Stacking / Structure and property / Rheology

Cite this article

Download citation ▾
Zhiyi Lu, Liming Tang. Modulation of Supramolecular Interactions of Urea-based Supramolecular Polymers via Molecular Structures. Chemical Research in Chinese Universities, 2018, 34(5): 849-856 DOI:10.1007/s40242-018-8006-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brunsveld L., Folmer B. J. B., Meijer E. W., Sijbesma R. P. Chem. Rev., 2001, 101(12): 4071.

[2]

Seiffert S., Sprakel J. Chem. Soc. Rev., 2012, 41(2): 909.

[3]

Aida T., Meijer E. W., Stupp S. I. Science, 2012, 335(6070): 813.

[4]

Zhang C., Wang J., Wang J. J., Li M., Yang X. L., Xu H. B. Chem.-Eur. J., 2012, 18(47): 14954.

[5]

Busseron E., Ruff Y., Moulin E., Giuseppone N. Nanoscale, 2013, 5(16): 7098.

[6]

Rybtchinski B. ACS Nano, 2011, 5(9): 6791.

[7]

Burattini S., Colquhoun H. M., Greenland B. W., Hayes W., Wade M. Macromol. Rapid Comm, 2009, 30(6): 459.

[8]

Haag R. Angew. Chem. Int. Ed., 2004, 43(3): 278.

[9]

Li J., Li X., Ni X., Wang X., Li H., Leong K. W. Biomaterials, 2006, 27(22): 4132.

[10]

Bae Y., Fukushima S., Harada A., Kataoka K. Angew. Chem. Int. Ed., 2003, 42(38): 4640.

[11]

de Espinosa L. M., Fiore G. L., Weder C., Foster E. J., Simon Y. C. Prog. Polym. Sci., 2015, 49: 60.

[12]

Herbst F., Döhler D., Michael P., Binder W. H. Macromol. Rapid Comm, 2013, 34(3): 203.

[13]

Herbst F., Seiffert S., Binder W. H. Polym. Chem., 2012, 3(11): 3084.

[14]

Murphy E. B., Wudl F. Prog. Polym. Sci., 2010, 35(1): 223.

[15]

Söntjens S. H. M., Meijer J. T., Kooijman H., Spek A. L., van Genderen M. H., Sijbesma R. P., Meijer E. W. Org. Let, 2001, 3(24): 3887.

[16]

Wilson A. J. Soft Matter, 2007, 3(4): 409.

[17]

Folmer B. J., Sijbesma R. P., Versteegen R. M., van der Rijt J. A. J., Meijer E. W. Adv. Mater, 2000, 12(12): 874.

[18]

Meazza L., Foster J. A., Fucke K., Metrangolo P., Resnati G., Steed J. W. Nat. Chem, 2013, 5(1): 42.

[19]

Burattini S., Greenland B. W., Merino D. H., Weng W. G., Seppala J., Colquhoun H. M., Hayes W., Mackay M. E., Hamley I. W., Rowan S. J. J. Am. Chem. Soc., 2010, 132(34): 12051.

[20]

Burattini S., Colquhoun H. M., Fox J. D., Friedmann D., Greenland B. W., Harris P. J., Hayes W., Mackay M. E., Rowan S. J. Chem. Commun, 2009, 44: 6717.

[21]

Hoeben F. J., Jonkheijm P., Meijer E. W., Schenning A. P. Chem. Rev., 2005, 105(4): 1491.

[22]

Grindy S. C., Learsch R., Mozhdehi D., Cheng J., Barrett D. G., Guan Z., Messersmith P. B., Andersen N. H. Nat. Mater, 2015, 14(12): 1210.

[23]

Hong G., Zhang H., Lin Y., Chen Y., Xu Y., Weng W., Xia H. Macromolecules, 2013, 46(21): 8649.

[24]

Hunt J. N., Feldman K. E., Lynd N. A., Deek J., Campos L. M., Spruell J. M., Hernandez B. M., Kramer E. J., Hawker C. J. Adv. Mater., 2011, 23(20): 2327.

[25]

Ustinov A., Weissman H., Shirman E., Pinkas I., Zuo X., Rybtchinski B. J. Am. Chem. Soc., 2011, 133(40): 16201.

[26]

Zhang M., Xu D., Yan X., Chen J., Dong S., Zheng B., Huang F. Angew. Chem. Int. Ed., 2012, 124(28): 7117.

[27]

Miyauchi M., Takashima Y., Yamaguchi H., Harada A. J. Am. Chem. Soc., 2005, 127(9): 2984.

[28]

Vreekamp R. H. v, Duynhoven J. P., Hubert M., Verboom W., Reinhoudt D. N. Angew. Chem. Int. Ed., 1996, 35(11): 1215.

[29]

Sijbesma R. P., Beijer F. H., Brunsveld L., Folmer B. J. B., KyHir-schberg J. H. K., Lange R. F. M., Lowe J. K. L., Meijer E. W. Science, 1997, 278(5343): 1601.

[30]

Parthasarathi R., Subramanian V., Sathyamurthy N. J. Phys. Chem. A, 2006, 110(10): 3349.

[31]

Dai Z. H., Qiang L., Tang L. M., Guo B. H. RSC Adv., 2015, 5(102): 84104.

[32]

Sivakova S., Bohnsack D. A., Mackay M. E., Suwanmala P., Rowan S. J. J. Am. Chem. Soc., 2005, 127(51): 18202.

[33]

Chen Y., Kushner A. M., Williams G. A., Guan Z. Nat. Chem., 2012, 4(6): 467.

[34]

Woodward P., Clarke A., Greenland B. W., Merino D. H., Yates L., Slark A. T., Miravet J. F., Hayes W. Soft Matter, 2009, 5(10): 2000.

[35]

Woodward P. J., Hermida Merino D., Greenland B. W., Hamley I. W., Light Z., Slark A. T., Hayes W. Macromolecules, 2010, 43(5): 2512.

[36]

Adarsh N. N., Kumar D. K., Dastidar P. Tetrahedron, 2007, 63(31): 7386.

[37]

George M., Tan G., John V. T., Weiss R. G. Chem.-Eur. J., 2005, 11(11): 3243.

[38]

Woodward P., Merino D. H., Hamley I. W., Slark A. T., Hayes W. Aust. J. Chem., 2009, 62(8): 790.

[39]

Imato K., Nishihara M., Kanehara T., Amamoto Y., Takahara A., Ot-suka H. Angew. Chem. Int. Ed, 2012, 51(5): 1138.

[40]

Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kin-bara K., Aida T. Nature, 2010, 463(7279): 339.

[41]

Montarnal D., Tournilhac F., Hidalgo M., Couturier J. L., Leibler L. J. Am. Chem. Soc., 2009, 131(23): 7966.

[42]

Cordier P., Tournilhac F., Soulié-Ziakovic C., Leibler L. Nature, 2008, 451(7181): 977.

[43]

Park K., Lim W. H., Ko E. A., Lee H. S. J. Polym. Sci. Pol. Phys., 2011, 49: 890.

[44]

Yuan W. Z., Lu P., Chen S., Lam J. W., Wang Z., Liu Y., Kwok H. S., Ma Y., Tang B. Z. Adv. Mater., 2010, 22(19): 2159.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/