Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism

Qiushi Sun , Xiaofeng Wang , Benxian Li , Yunpeng Wu , Ziqing Zhang , Xinyang Zhang , Xudong Zhao , Xiaoyang Liu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 344 -349.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 344 -349. DOI: 10.1007/s40242-018-8001-9
Article

Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism

Author information +
History +
PDF

Abstract

Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree of hydrogenation. Here we reported the controllable hydrogenation of graphene using ball-milling method with acetic acid as hydrogenating agent. The hydrogenation graphene sheets were characterized by means of transmission electron microscopy(TEM), Raman spectroscopy and X-ray photoelectron spectroscopy, and magnetic measurement. The relusts of Raman spectroscopy demonstrate that the relative intensity of D band increases with the hydrogenation degree. The resluts of magnetic meansurement indicate the maximal magnetic moment of 0.274 A·m2/kg at 2 K for semi-hydrogenation graphene.

Keywords

Graphene / Hydrogenated graphene / Ball-milling / Ferromagnetism

Cite this article

Download citation ▾
Qiushi Sun, Xiaofeng Wang, Benxian Li, Yunpeng Wu, Ziqing Zhang, Xinyang Zhang, Xudong Zhao, Xiaoyang Liu. Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism. Chemical Research in Chinese Universities, 2018, 34(3): 344-349 DOI:10.1007/s40242-018-8001-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Edwards R. S., Coleman K. S. Nanoscale, 2012, 5(1): 38.

[2]

Li L., Qin R., Li H., Yu L., Liu Q., Luo G., Gao Z. X., Lu J. ACS Nano, 2011, 5(4): 2601.

[3]

Allemand P. M., Khemani K. C., Koch A., Wudl F., Holczer K., Do-novan S., Grüner G., Thompson J. D. Science, 1991, 253(5017): 301.

[4]

Kenmochi K., Sato K., Yanase A., Katayamayoshida H. JJAP, 2004, 44(44): 51.

[5]

Yue Z. J., Seo D. H., Ostrikov K., Wang X. L. Applied Physics Let-ters, 2014, 104(9): 249.

[6]

Qin S., Sun P., Di Q., Zhou S., Yang C., Xu Q. RSC Adv., 2015, 5(113): 92899.

[7]

Eng A. Y. S., Poh H. L., Šaněk F., Maryško M., Matějková S., Sofer Z., Pumera M. ACS Nano, 2013, 7(7): 5930.

[8]

Wang Y., Huang Y., Song Y., Zhang X., Ma Y., Liang J., Chen Y. Nano Lett., 2009, 9(1): 220.

[9]

Tang T., Tang N. J., Zheng Y. P., Wan X. G., Liu Y., Liu F. C., Xu Q. H., Du Y. W. Sci. Rep., 2015, 5: 8448.

[10]

Raj K. G., Joy P. A. Chem. Phys. Lett., 2014, 605/606(6): 89.

[11]

Yazyev O. V., Tavernelli I., Rothlisberger U., Helm L. Phys. Rev. B, 2007, 75(11): 115418.

[12]

Zhang Y., Nayak T. R., Hong H., Cai W. Nanoscale, 2012, 4(13): 3833.

[13]

Rao C. N. R., Matte H. S. S. R., Subrahmanyam K. S., Maitra U. Cheminform, 2012, 43(13): 45.

[14]

Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S. Phys. Rev. B, 1996, 54(24): 17954.

[15]

Kusakabe K., Maruyama M. Phys. Rev. B, 2002, 67(9): 552.

[16]

David S., Nicolas L., Pablo O., Jean-Christophe C., Juan-Jose P., Stephan R. Phys. Rev. Lett., 2011, 107(1): 5826.

[17]

Jia X., Hofmann M., Meunier V., Sumpter B. G., Campos-Delgado J. Romo Herrera J. M., Science, 2009, 323(5922): 1701.

[18]

Krauss B., Nemes-Incze P., Skakalova V., Biro L. P., Klitzing K. V., Smet J. H. Nano Lett., 2010, 10(11): 4544.

[19]

Sofo J. O., Chaudhari A. S., Barber G. D. Physical Review B, 2007, 75(15): 153401.

[20]

Samarakoon D. K., Wang X. Q. ACS Nano, 2009, 3(12): 4017.

[21]

Shkrebtii A. I., Heritage E., Mcnelles P., Cabellos J. L., Mendoza B. S. Physica Status Solidi, 2012, 9(6): 1378.

[22]

Lebegue S., Klintenberg M., Eriksson O., Katsnelson M. I. Phys. Rev. B, 2009, 79(24): 1377.

[23]

Alzahrani A. Z., Srivastava G. P. Applied Surface Science, 2010, 256(19): 5783.

[24]

Schäfer R. A., Englert J. M., Peter W., Walter B., Frank H., Thomas S. Angew. Chem., 2013, 52(2): 754.

[25]

Zhou J., Wang Q., Sun Q., Chen X. S., Kawazoe Y., Jena P. Nano Lett., 2009, 9(11): 3867.

[26]

Wei D. C., Wu B., Guo Y. L., Yu G., Liu Y. Q. Acc. Chem. Res., 2012, 46(1): 106.

[27]

Cui X., Zhang C., Hao R., Hou Y. Nanoscale, 2011, 3(5): 2118.

[28]

Coleman J. N. Acc. Chem. Res., 2012, 46(1): 14.

[29]

Mildred Q., Ester V., Maurizio P. Acc. Chem. Res., 2013, 46(1): 138.

[30]

Vasilios G., Michal O., Bourlinos A. B., Vimlesh C., Namdong K., Kemp C. K. Chem. Rev., 2012, 112(10): 6156.

[31]

León V., Quintana M., Herrero M. A., Fierro J. L. G., Hoz A. D. L., Prato M. Chem. Comm., 2011, 47(39): 10936.

[32]

Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P. Science, 2009, 323(6): 610.

[33]

Burgess J. S., Matis B. R., Robinson J. T., Bulat F. A., Perkins F. K., Houston B. H. Carbon, 2011, 13(13): 4420.

[34]

Luo Z., Yu T., Kim K. J., Ni Z., You Y., Lim S. ACS Nano, 2009, 3(7): 1781.

[35]

Kim H., Balgar T., Hasselbrink E. Chem. Phys. Lett., 2012, 546(1): 12.

[36]

Xie L., Wang X., Lu J., Ni Z. Applied Physics Letters, 2011, 98(19): 666.

[37]

Tadyszak K., Strzelczyk R., Maćkowiak M., Augustyniak-Jabłokow M. A. Journal of Molecular Structure, 2014, 1076: 31.

[38]

Zhang R., Zhang B., Sun S. Q. RSC Adv., 2015, 5(56): 44783.

[39]

Liu D., Lei W., Chen Y. Phys. Chem. Chem. Phys., 2015, 17(10): 6913.

[40]

Sepioni M., Nair R. R., Rablen S., Narayanan J., Tuna F., Winpenny R. Phys. Rev. Lett., 2010, 105(20): 205.

[41]

Li S., Tian L., Shi L., Wen L., Ma T. Journal of Physics: Condensed Matter, 2016, 28(8): 086001.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/