Effect of Temperature on Thermal Treatment of Silica Coated Magnetic Nanoparticles

Yu Li , Penghong Zhang , Huipeng Zhao , Xiaoqiang Du , Junping Li , Laishuan Liu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 857 -861.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 857 -861. DOI: 10.1007/s40242-018-7431-8
Article

Effect of Temperature on Thermal Treatment of Silica Coated Magnetic Nanoparticles

Author information +
History +
PDF

Abstract

In the quest for developing a catalyst with as many desired characteristics, a facile synthetic route was designed for the preparation of mesoporous silica coated magnetic nanoparticles(MSMNP) employing a colloid mill reactor. The composite particles were characterized by the techniques, such as nitrogen adsorption-desorption isotherms, scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction patterns (XRD), thermo-gravimetric analysis(TGA), Fourier transform infrared spectroscopy(FTIR) and vibrating sample magnetometer(VSM), etc. The analysis showed that the resulted MSMNP composites were composed of silica shell layers with open pores connecting channels and NiFe2O4 with spinel structure, so the thermal treatment temperature did not show significant effect on pore textural properties, and its specific surface areas were in the range of 443–474 m2/g, while pore volume of about 0.8 cm3/g with an average pore size of around 9.5 nm. The composites with super paramagnetic nature were encapsulated entirely with amorphous silica layers contributing to optimum porosity and abundant surface hydroxyl groups.

Keywords

Silica coated magnetic nanoparticle / Thermal treatment / Pore textural property / Magnetic carrier

Cite this article

Download citation ▾
Yu Li, Penghong Zhang, Huipeng Zhao, Xiaoqiang Du, Junping Li, Laishuan Liu. Effect of Temperature on Thermal Treatment of Silica Coated Magnetic Nanoparticles. Chemical Research in Chinese Universities, 2018, 34(5): 857-861 DOI:10.1007/s40242-018-7431-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Polshettiwar V., Luque R., Fihri A., Zhu H. B., Bouhrara M., Bas-set J. M. Chem. Rev, 2011, 111: 3036.

[2]

Gawande M. B., Monga Y., Zboril R., Sharma R. K. Coordin. Chem. Rev., 2015, 288: 118.

[3]

Nie J., He B., Cheng Y. M., Yin W., Hou C. J., Hou D. Q., Qian L. L., Qin Y. A., Fa H. B. Chem. Res. Chinese Universities, 2017, 33(6): 951.

[4]

Chng L. L., Erathodiyil N., Ying J. Y. Acc. Chem. Res, 2013, 46: 1825.

[5]

Neyts E. C., Ostrikov K., Sunkara M. K., Bogaerts A. Chem. Rev., 2015, 115: 13408.

[6]

Sharma R. K., Yadav M., Monga Y., Gaur R., Adholeya A., Zboril R., Varma R. S., Gawande M. B. ACS Sustain. Chem. Eng., 2016, 4: 1123.

[7]

Gill C. S., Price B. A., Jones C. W. J. Catalysis, 2007, 251: 145.

[8]

Stoeber W., Fink A., Bohn E. J. Colloid Interf. Sci., 1968, 26: 62.

[9]

Montañopriede J. L., Coelho J. P., Guerreromartínez A., Rodríguez O. P., Pal U. J. Phys. Chem. C, 2017, 121: 9543.

[10]

Ow H., Larson D. R., Srivastava M., Baird B. A., Webb W. W., Wiesner U. Nano Lett., 2005, 5: 113.

[11]

Yu S. Y., Zhang H. J., Yu J. B., Wang C., Sun L. N., Shi W. D. Langmuir, 2007, 3: 7836.

[12]

Christy R., Vestal Z., Zhang J. Nano Lett., 2003, 3: 1739.

[13]

Leng Y. H., Sato K., Shi Y. G., Li J. G., Ishigaki T., Yoshida T., Kamiya H. J. Phys. Chem. C, 2009, 113: 16681.

[14]

Christy R., Vestal Z., Zhang J. Nano Lett., 2003, 3: 1739.

[15]

Qu H., Tong S., Song K. J., Ma H., Bao G., Pincus S., Zhou W. L., Connor C. Langmuir, 2013, 29: 10573.

[16]

Zhao W. R., Gu J. L., Zhang L. X., Chen H. R., Shi J. L. J. Am. Chem. Soc., 2005, 127: 8916.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/