Effect of Thermal Cycles on the Thermal Expansion Behavior of T700 Carbon Fiber Bundles

Guoliang Geng , Xiaofei Ma , Hongbin Geng , Yiyong Wu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 451 -456.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 451 -456. DOI: 10.1007/s40242-018-7430-9
Article

Effect of Thermal Cycles on the Thermal Expansion Behavior of T700 Carbon Fiber Bundles

Author information +
History +
PDF

Abstract

The relationships between the coefficient of thermal expansion(CTE) of T700 carbon fiber bundles(CFBs) and the thermal cycles were investigated. The microstructure of T700 CFBs was analyzed with Raman spectra and XRD before and after the thermomechanical test. The results indicated that the T700 CFBs exhibited negative expansion in the direction of parallel fibers in the temperature range of‒150―150 °C. The thermal strain that occurred during the heating and the cooling thermal cycle had an unclosed curve that served as the loop. When the experimental load was the same, the position of strain loop tended to move upward, and the length of the specimen increased continuously with the thermal cycles increasing. The microstructural analysis suggested that the degree of structural order and the degree of orientation along the fiber axis were improved with the increase of thermal cycles. The change of microstructure parameters could be the primary cause of the negative CTE’s variation within the T700 CFBs.

Keywords

T700 carbon fiber bundle / Thermal cycle / Coefficient of thermal expansion / Microstructural analysis

Cite this article

Download citation ▾
Guoliang Geng, Xiaofei Ma, Hongbin Geng, Yiyong Wu. Effect of Thermal Cycles on the Thermal Expansion Behavior of T700 Carbon Fiber Bundles. Chemical Research in Chinese Universities, 2018, 34(3): 451-456 DOI:10.1007/s40242-018-7430-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Terada M., Bludworth N., Moore J., Sullivan J. SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, Brasilia, 2005, 647.

[2]

Van’t Klooster K., Scialino L., Cherniavski A. International Confe-rence on Antenna Theory and Techniques, Kyiv, 2005, 70.

[3]

Akira M., Satoshi H., Mitsunobu W. Acta Astronaut., 2003, 53.

[4]

Thomson M. W. Antennas and Propagation Society International Symposium, Orlando, 2002, 1516.

[5]

Gao L. L., Lu H. Y., Lin H. B., Sun X. Y., Xu J. L., Liu P. C., Li Y. Chem. Res. Chinese Universities, 2014, 30(3): 441.

[6]

Li Q. M. Chem. Res. Chinese Universities, 2013, 29(5): 1011.

[7]

Farooq U., Myler P. Acta Astronaut, 2014, 102: 169.

[8]

Bhagat A. R., Mahajan P. J. Mater. Eng. Perform, 2016, 25: 1.

[9]

Liu X., Wu M. E., Ma X. F., Fang H. F. Spacecraft Structures Con-ference, National Harbor, 2014, 24(1): 27.

[10]

Rahmat-Samii Y., Huang J., Lopez B., Lou M., Im E., Durden S. L., Bahadori K. IEEE T. Antenn. Propag., 2005, 53: 2503.

[11]

Wolff E.G. J. Compos. Mater., 1987, 21: 81.

[12]

Davis G. T., Eby R. K., Colson J. P. J. Appl. Phys., 1970, 41: 4316.

[13]

Kobayashi Y., Keller A. Polymer, 1970, 11: 114.

[14]

Choy C. L., Chen F. C., Young K. J. Polym. Sci. Pol. Phys., 1981, 19: 335.

[15]

Sauder C., Lamon J., Pailler R. Carbon, 2004, 42: 715.

[16]

Pradere C., Batsale J. C., Goyhénèche J. M., Pailler R., Dilhaire S. Carbon, 2009, 47: 737.

[17]

Kanagaraj S., Pattanayak S. Cryogenics, 2003, 43: 399.

[18]

Praveen R. S., Jacob S., Murthy C. R. L., Balachandran P., Rao Y. V. K. S. Cryogenics, 2011, 51: 95.

[19]

Schwarz G. Cryogenics, 1988, 28: 248.

[20]

Tuinstra F., Koenig J. L. J. Compos. Mater., 1970, 4: 492.

[21]

Bruckmoser K., Resch K., Kisslinger T., Lucyshyn T. Polym. Test., 2015, 46: 122.

[22]

Khayyam H., Fakhrhoseini S. M., Church J. S., Milani A. S., Bab-Hadiashar A., Jazar R., Naebe M. Appl. Therm. Eng., 2017, 125: 1539.

[23]

Liu M. S., Bursill L. A., Prawer S., Beserman R. Phys. Rev. B, 2000, 61: 3391.

[24]

Ammar M. R., Rouzaud J. N. J. Raman Spectrosc., 2012, 43: 207.

[25]

Ferrari A. C., Robertson J. Phys. Rev. B, 2000, 61: 14095.

[26]

Ferrari A. C., Rodil S. E., Robertson J. Phys. Rev. B, 2003, 67: 1553061.

[27]

Tay B. K., Shi X., Tan H. S., Yang H. S., Sun Z. Surf. Coat. Tech., 1998, 105: 155.

[28]

Huang Y., Young R. J. Carbon, 1995, 33: 97.

[29]

Robinson I. M., Zakikhani M., Day R. J., Young R. J., Galiotis C. J. Mater. Sci. Lett., 1987, 6: 1212.

[30]

Wang A., Dhamenincourt P., Dubessy J., Guerard D., Landais P., Le-laurain M. Carbon, 1989, 27: 209.

[31]

Li D., Wang H., Wang X. J. Mater. Sci., 2007, 42: 4642.

[32]

Northolt M. G., Veldhuizen L. H., Jansen H. Carbon, 1991, 29: 1267.

[33]

Ogale A. A., Lin C., Anderson D. P., Kearns K. M. Carbon, 2002, 40: 1309.

[34]

Manocha L. M., Bahl O. P. Fibre Sci. Tech., 1982, 17: 221.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/