Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation

Xie Han , Kaiyuan Shao , Wenxiang Hu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 571 -577.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 571 -577. DOI: 10.1007/s40242-018-7425-6
Article

Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation

Author information +
History +
PDF

Abstract

Hyperglycemia is frequently accompanying with hyperlipidemia. To explore the potent drugs with dual-activity and dual-site effects that could reduce blood glucose and blood lipid at the same time, fibrate group with lipid-lowering effect on the 9th position of berberine(BBR) was introduced using the drug design combination principle and the multitarget collaborative treatment method. Moreover, the molecular structure of BBR was modified, and six 9-substituted derivatives of BBR were designed and synthesized, among which, five compounds have never been reported before. In addition, the molecular structures of these derivatives were identified using liquid chromatography-mass spectrometry(LC-MS), 1H nuclear magnetic resonance(1H NMR) and 13C NMR, respectively. Furthermore, the microwave irradiation experimental technique was applied in the synthesis reaction using the novel microwave synthesizer, which accelerated the reaction rate, enhanced the reaction yield, reduced the reaction by-products, and simplified the post-processing steps. In the meantime, the 9-position regioselective demethylation of BBR was explored through quantum chemical calculation during the synthesis of berberrubine. The computations were consistent with the experimental results, which contributed to deducing the mechanism of its selective methylation.

Keywords

Berberine derivative / Microwave irradiation / Quantum chemistry / Regioselectivity

Cite this article

Download citation ▾
Xie Han, Kaiyuan Shao, Wenxiang Hu. Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation. Chemical Research in Chinese Universities, 2018, 34(4): 571-577 DOI:10.1007/s40242-018-7425-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li B., Zhu W. L., Cheng K. X. Acta Pharm. Sin., 2008, 43: 773.

[2]

Yin J., Hu R., Chen M., Tang J., Li F., Yang Y., Chen J. Metabolism, 2002, 51: 1439.

[3]

Kong W., Wei J., Abidi P., Lin M., Inaba S., Li C., Wang Y., Wang Z., Si S., Pan H., Wang Y., Li Z., Liu J., Jiang J. D. Nat. Med., 2004, 10: 1344.

[4]

Hu W. X., Xu L. L., Wang Z., Jing J., Zhang Z. Y. Antidiabetics and Antiatheroscloresis Medicine Compounds and Preparing Method Thereof, 2011.

[5]

Ma L. J., Modern J. Integrated Tradi. Chin. Western Med., 2013, 22: 3453.

[6]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannen-berg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision A. 1, Gaussian Inc., 2009.

[7]

Lv D. X. ChemicaI Constituents and Their Biological Activities from Berberisagricolaahrendt, 2007.

[8]

BodiwalaH S., Sabde S., Mitra D., BhutaniK K., Singh I. P. J. Eur. J. Med. Chem., 2011, 46: 1045.

[9]

Biswanath D., Srinivas K. V. N. S. Syn. Commun., 2002, 32: 3027.

[10]

Zhang M. X., Li C., Zheng J., Li X. G. The Third National Conference on Organic Synthetic Chemistry and Process, 2010.

[11]

Liu L. X., Yuan X., Gao Y., Zhou D. B. Nat. Prod. Res. Dev., 2014, 26: 427.

[12]

Jiang Y. R. Polyaminomodified Berberine Derivatives as New and Strong DNA-binders, 2006.

[13]

Hong J. Study on the Synthesis and Anti Inflammatory Activity of Four Hydrogen Berberine Derivatives, 2013.

[14]

Chen J., Wang T., Xu S., Lin A., Yao H., Xie W., Zhu Z., Xu J. Eur. J. Med. Chem., 2017, 132: 173.

[15]

Huang L., Luo Z., He F., Lu J., Li X. Bioorgan. Med. Chem., 2010, 18: 4475.

[16]

Jiang H. L., Wang X., Huang L., Luo Z. H., Su T., Ding K., Li X. S. Bioorgan. Med. Chem., 2011, 19: 7228.

[17]

Zhang W. J., Ou T. M., Lu Y. J., Huang Y. Y., Wu W. B., Huang Z. S., Zhou J. L., Wong K. Y., Gu L. Q. Bioorgan. Med. Chem., 2007, 15: 5493.

[18]

Qiu Z. B. The Structure Modification Study on Componenet of Coptis and Magnolia Herb Pairs, 2012.

[19]

He Y., Gao Y. H., Wu Z. H. Preparation Method and Application of 9-Substituted Double-Functional Group Berberine Derivative, 2016.

[20]

Lu M. W., Hu W. X. Chin. J. Org. Chem., 1995, 6: 561.

[21]

Hu W. X., Hu W. H., Wang J. Y., Ding J. F., Yu L. H. Chin. J. Med. Chem., 1999, 9(1): 70.

[22]

Liu M., Hu W. X. Adv. Mater Res., 2013, 22: 1711.

[23]

Han X., Shao K. Y., Hu W. X. J. Microwave Chem., 2017, 1(1): 15.

[24]

Shen X. Z., He H. J., Yang B. W., Zhao Z. G., Shao K. Y., Hu W. X. Chem. Res. Chinese Universities, 2017, 33(5): 773.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/