Hollow-glass-microsphere-based Biphenyl Epoxy Resin Composite with Low Dielectric Contant

Weiwei Xu , Hui Na , Chengji Zhao

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 862 -866.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 862 -866. DOI: 10.1007/s40242-018-7419-4
Article

Hollow-glass-microsphere-based Biphenyl Epoxy Resin Composite with Low Dielectric Contant

Author information +
History +
PDF

Abstract

In this study, rigid 4,4′-diglycidyl(3,3′,5,5′-tetramethylbiphenyl) epoxy(TMBP)-based composites were developed by the incorporation of varying percentages of commercial hollow glass microspheres(HGMs, QH-450) into the TMBP resin used for electronic packaging. The thermal and mechanical properties as well as the morphology of all the composites were characterized, and dielectric properties were characterized by advanced analytical techniques. The results reveal that a series of TMBP/QH-450 composites exhibits higher initial degradation tempera-tures(T d,5%>300 °C), and the residual char and glass transition temperature were clearly improved with QH-450 loading. In addition, all epoxy composites exhibited a lower dielectric constant ranging from 3.74 to 3.06 at 1.2 MHz because the lower dielectric properties of the inert gas used as the core of the QH-450 decreased molecule polarity. Hence, this developed TMBP/QH450 system demonstrates potential applications in electronic packaging.

Keywords

Biphenyl / Thermal property / Polymer composite / Dielectric constant

Cite this article

Download citation ▾
Weiwei Xu, Hui Na, Chengji Zhao. Hollow-glass-microsphere-based Biphenyl Epoxy Resin Composite with Low Dielectric Contant. Chemical Research in Chinese Universities, 2018, 34(5): 862-866 DOI:10.1007/s40242-018-7419-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hao J. M., Wei Y. F., Mu J. X. RSC. Adv., 2016, 7: 87433.

[2]

Mo J. P., Ma W. S., Zhang W. C., Yuan J. F. Mater. Design., 2007, 128: 56.

[3]

Maier G. Prog. Polym. Sci., 2001, 26(1): 3.

[4]

Huang Y. W., Zhang S. B., Hu H., Wei X. N., Yu H. T., Yang J. X. J. Polym. Sci. Poly. Chem., 2017, 55(11): 1920.

[5]

Volksen W., Miller R. D., Dubois G. Chem. Rev., 2010, 110(1): 56.

[6]

Zeng X. L., Ye L., Guo K., Sun R., Xu J. B., Wong C. P. Adv. Electron. Mater., 2016, 2(5): 1500485.

[7]

Fukumaru T., Fujigaya T., Nakashima N. Polym. Chem., 2012, 3(2): 369.

[8]

Yuan C., Wang J. J., Jin K. K., Diao S., Sun J., Tong J. W., Fang Q. Macromolecules., 2014, 47(18): 6311.

[9]

Wang Y., Yu J. R., Zhu J., Hu Z. M. J. Polym. Sci. Poly. Chem., 2016, 54(11): 1623.

[10]

Wang J., Qian L., Xu B., Xi W., Liu X. Polym. Degrad. Stabil., 2015, 122: 8.

[11]

Kandola B. K., Biswas B., Price D. Polym. Degrad. Stabil., 2010, 95(2): 144.

[12]

Tang S., Qian J., Liu X., Dong Y. Polym. Degrad. Stabil., 2016, 133: 350.

[13]

Chen Z. K., Yang J. P., Ni Q. Q., Fu S. Y., Huang Y. G. Polym., 2009, 50(19): 4753.

[14]

Wang X., Hu Y., Song L., Xing W., Lu H. Polym., 2010, 51(11): 2435.

[15]

Konuray A. O., Fernández-Francos X., Ramis X. Polym., 2017, 116: 191.

[16]

Yang B., Wang W., Huang J. Polym., 2015, 77: 129.

[17]

Carolan D., Ivankovic A., Kinloch A. J. Polym., 2016, 97: 179.

[18]

Yang S., Zhang Q., Hu Y. Polym. Degrad. Stabil., 2016, 133: 358.

[19]

Na T. Y., Jiang H., Zhao L., Zhao C. J. RSC. Adv., 2017, 7: 53970.

[20]

Hwang H. J., Hsu S. W., Chung C. L., Wang C. S. Reat. Funct. Polym., 2008, 68(8): 1185.

[21]

Tao Z. Q., Yang S. Y., Ge Z. Y., Chen J. S. Euro. Polym. J., 2007, 43(2): 550.

[22]

Kang D. H., Hwang S. W., Jung B. N., Shim J. K. Compos. Part B: Eng., 2017, 117: 35.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/