Metastable Phase Equilibrium in the Reciprocal Quaternary System LiCl+MgCl2+Li2SO4+MgSO4+H2O at 348.15 K and 0.1 MPa
Xiaoping Yu , Qin Wang , Yafei Guo , Tianlong Deng
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 798 -802.
Metastable Phase Equilibrium in the Reciprocal Quaternary System LiCl+MgCl2+Li2SO4+MgSO4+H2O at 348.15 K and 0.1 MPa
The metastable solubilities and the physicochemical properties including density and pH of the reciprocal quaternary system(LiCl+MgCl2+Li2SO4+MgSO4+H2O) at 348.15 K and 0.1 MPa were determined using the isother-mal evaporation method. The dry-salt diagram and water-phase diagram were plotted based on the experimental data. There are five invariant points, eleven univariant curves, and seven crystallization zones corresponding to hexahy-drite, tetrahydrite, kieserite, bischofite, lithium sulfate monohydrate, lithium chloride monohydrate and lithium car-nallite. Comparison between the stable and metastable diagrams at 348.15 K indicates that the metastable phenome-non of magnesium sulfate is obvious, and the crystallization regions of hexahydrite and tetrahydrite disappear in the stable phase diagram. A comparison of the metastable dry-salt phase diagrams at 308.15, 323.15 and 348.15 K shows that with the increasing of temperature the epsomite crystallization zone disappears from the dry-salt phase diagram of 303.15 K, and a new kieserite crystallization zone is presented at 348.15 K. The density and pH in the metastable equilibrium solution present regular change with the increasing of Jänecke index J(2Li+), and the calculated densities using the empirical equation agree well with the experimental values.
Phase equilibrium / Phase diagram / Solubility / Quaternary system / Lithium salt
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |