Sustainable Synthesis of Hierarchically Porous Silicalite-1 Zeolite by Steam-assisted Crystallization of Solid Raw Materials Without Secondary Templates

Xiaofang Liu , Shangjing Zeng , Runwei Wang , Zongtao Zhang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 350 -357.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 350 -357. DOI: 10.1007/s40242-018-7400-2
Article

Sustainable Synthesis of Hierarchically Porous Silicalite-1 Zeolite by Steam-assisted Crystallization of Solid Raw Materials Without Secondary Templates

Author information +
History +
PDF

Abstract

Hierarchical silicalite-1 zeolites were obtained from the direct conversion of a mixture of ground solid raw materials via a steam-assisted crystallization(SAC) method without involvement of any mesoscale template. Only a trace amount of water was necessary during the crystallization, implying that the amount of water can be dramatically reduced, which still offers easy separation and high yields. The simple procedure involved only grinding and heating, which not only saves resources and energy, but also significantly reduces the discharge of eco-friendly synthesis of zeolites for practical applications. Compared to conventional bulk silicalite-1, the nanosized hierarchical zeolites with MFI structure show enhanced removal capabilities for methylene blue owing to their hierarchical porosity.

Keywords

Hierarchically silicalite-1 zeolite / Steam-assisted crystallization / Easy separation / Secondary template excluding

Cite this article

Download citation ▾
Xiaofang Liu, Shangjing Zeng, Runwei Wang, Zongtao Zhang, Shilun Qiu. Sustainable Synthesis of Hierarchically Porous Silicalite-1 Zeolite by Steam-assisted Crystallization of Solid Raw Materials Without Secondary Templates. Chemical Research in Chinese Universities, 2018, 34(3): 350-357 DOI:10.1007/s40242-018-7400-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J., Park J. N., Jeong H. C., Choi K. S., Wei X. Y., Hong S. I., Lee C. W. Energy & Fuels, 2004, 18: 470.

[2]

Vu D. V., Miyamoto M., Nishiyama N., Ichikawa S., Egashira Y., Ueyama K. Micro. Meso. Mater., 2008, 115: 106.

[3]

Chen F., Ma L., Cheng D., Zhan X. Catal. Commun., 2012, 18: 110.

[4]

Yin C. Y., Ni R., Bao X., Chen Y. H. Micro. Meso. Mater., 2015, 202: 133.

[5]

Xue Z. T., Ma J. H., Hao W. M., Bai X., Kang Y. H., Liu J. H., Li R. F. J. Mater. Chem., 2012, 22: 2532.

[6]

Chang C. C., Teixeira A. R., Li C., Dauenhauer P. J., Fan W. Lang-muir, 2013, 29: 13941.

[7]

Welk M. E., Bonhomme F., Nenoff T. M. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 2004, 49: 245.

[8]

Lee C. K., Chiang A. S. T. J. Chem. Soc., Faraday Trans., 1996, 92: 3445.

[9]

Song L., Sun Z., Ban H., Dai M., Rees L. Adsorption, 2005, 11: 325.

[10]

Rafatullah M., Sulaiman O., Hashim R., Ahmad A. J. Hazard. Mater., 2010, 177: 70.

[11]

Hu Q., Dou B. J., Tian H., Li J. J., Li P., Hao Z. P. Micro. Meso. Mater., 2010, 129: 30.

[12]

Sun X. Y., Li J. W., Li Y. X., Yan S. C., Chen B. H. Chem. Res. Chi-nese Universities, 2009, 25(3): 377.

[13]

Zhang Q., Hu S., Zhang L., Wu Z., Gong Y., Dou T. Green Chemi-stry, 2014, 16: 77.

[14]

Cui T. L., Li X. H., Lv L. B., Wang K. X., Su J., Chen J. S. Chem. Commun., 2015, 51: 12563.

[15]

Wei Y., Parmentier T. E., Jong K. P., Zecevic J. Chem. Soc. Rev., 2015, 44: 7234.

[16]

Moller K., Bein T. Chem. Soc. Rev., 2013, 42: 3689.

[17]

Groen J. C., Moulijn J. A., Ramirez J. P. J. Mater. Chem., 2006, 16: 2121.

[18]

Verboekend D., Vile G., Ramirez J. R. Adv. Funct. Mater., 2012, 22: 916.

[19]

Chen H., Wydra J., Zhang X., Lee P. S., Wang Z., Fan W., Tsapatsis M. J. Am. Chem. Soc., 2011, 133: 12390.

[20]

Sun C., Du J., Liu J., Yang Y., Ren N., Shen W., Xu H., Tang Y. Chem. Commun., 2010, 46: 2671.

[21]

Song Y. D., Hua Z. L., Zhu Y., Zhou X. X., Wu W., Zhang L. L., Shi J. L. Chem. Asian J., 2012, 7: 2772.

[22]

Tao Y., Kanoh H., Kaneko K. J. Am. Chem. Soc., 2003, 125: 6044.

[23]

Liu S. Z., Cao X. J., Li L. S., Li C. J., Li Y. Y., Xiao F. S. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 318: 269.

[24]

Inayat A., Knoke I., Spiecker E. Angew. Chem. Int. Ed., 2012, 51: 1.

[25]

Koekkoek A., Tempelman C., Degirmenci V., Guo M., Feng Z., Li C., Hensen E. Catalysis Today, 2011, 168: 96.

[26]

Chal R., Gerardin C., Bulut M., Donk S. Chem. Cat. Chem., 2011, 3: 67.

[27]

Tosheva L., Valtchev V. P. Chem. Mater., 2005, 17: 2494.

[28]

Pan F., Lu X. C., Zhu Q. S., Zhang Z. M., Yan Y., Wang T. Z., Chen S. W. J. Mater. Chem. A, 2014, 2: 20667.

[29]

Zhang Y. C., Zhu K., Zhou X. G., Yuan W. K. New J. Chem., 2014, 38: 5808.

[30]

Naik S. P., Chiang A. S. T., Thompson R. W. J. Phys. Chem. B, 2003, 107: 7006.

[31]

Li W. L., Ma T., Zhang Y. F., Gong Y. J., Wu Z. J., Dou T. Cryst. Eng. Comm., 2015, 17: 5680.

[32]

Tsai R. F., Du K. J., Cheng T. Y., Ho G. H., Wu P. H., Liu S. B., Tsai T. C. Catalysis Today, 2013, 204: 30.

[33]

Jin Y. Y., Chen X., Sun Q., Sheng N., Liu Y., Bian C. Q., Chen F., Meng X. J., Xiao F. S. Chem. Eur. J., 2014, 20: 17616.

[34]

Zhou J., Hua Z., Shi J. L., He Q. J., L G. M., Ruan M. L. Chem. Eur. J., 2009, 15: 12949.

[35]

Moller K., Yilmaz B., Muller U., Bein T. Chem. Eur. J., 2012, 18: 7671.

[36]

Zhu K., Sun J. M., Liu J., Wang L. Q., Wan H. Y., Hu J. Z., Wang Y., Peden C. H. F., Nie Z. ACS Catal., 2011, 1: 682.

[37]

Matsukata M., Ogura M., Osaki T., Rao P. R., Nomura M., Kikuchi E. Topics in Catalysis, 1999, 9: 77.

[38]

Ren L. M., Wu Q. M., Yang C. G., Zhu L. F., Li C. J., Zhang P. L., Zhang H. Y., Meng X. J., Xiao F. S. J. Am. Chem. Soc., 2012, 134: 15173.

[39]

Wu Q. M., Liu X. L., Zhu L. F., Ding L. H., Gao P., Wang X., Pan S. X., Bian C. Q., Meng X. J., Xu J., Deng F., Maurer S., Muller U., Xiao F. S. J. Am. Chem. Soc., 2015, 137: 1052.

[40]

Weitkamp J., Hunger M. Studies in Surface Science and Catalysis, 2005, 155: 1.

[41]

Matsukata M., Osaki T., Ogura M., Kikuchi E. Micro. Meso. Mater., 2002, 56: 1.

[42]

Rafatullah M., Sulaiman O., Hashim R., Ahmad A. J. Hazard. Mater., 2010, 177: 70.

[43]

Sapawe N., Jalil A., Triwahyono S., Shah M., Jusoh R., Salleh N., Hameed B., Karim A. Chem. Eng. J., 2013, 229: 388.

[44]

Xu G. R., Wang J. N., Li C. J. RSC Adv., 2013, 3: 12985.

[45]

Zhou J., Hua Z., Wu W., Liu Z., Zhu Y., Chen Y., Shi J. L. Dalton Trans., 2011, 40: 12667.

[46]

Hammed A. K., Dewayanto N., Du D., Rahima M. H. J. Environ. Chem. Engineer., 2016, 4(3): 2607.

[47]

Kariminezhad H., Habibi M., Mirzabayi N. J. Photochem. Photobio. B: Biology, 2015, 148: 107.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/