Thermodynamic Evaluation of NaF-MF n(M=Be, U, Th) Systems for Molten Salt Reactor

Shuang Wu , Xiang Li , Peng Zhang , Xuehui An , Leidong Xie

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 457 -463.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 457 -463. DOI: 10.1007/s40242-018-7398-5
Article

Thermodynamic Evaluation of NaF-MF n(M=Be, U, Th) Systems for Molten Salt Reactor

Author information +
History +
PDF

Abstract

The phase diagrams of NaF-BeF2, NaF-ThF4 and NaF-UF4 systems were assessed based on thermodynamic principles, and diverse thermodynamic models were adapted to different systems. Associate solution model (ASM) was used to describe the Gibbs energies of liquid phase of the NaF-BeF2 system, whereas other systems(NaF-ThF4 and NaF-UF4) were treated with the substitutional solution model(SSM) and intermediate compounds were described as stoichiometric compounds according to the Neumann-Kopp rule. All the thermodynamic model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and the experimental data. The derived thermodynamic parameters will be merged into the NaF-BeF2-ThF4-UF4 database to develop the thorium molten salt reactor(TMSR) project.

Keywords

Molten salt / Thermodynamic modeling / Phase diagram

Cite this article

Download citation ▾
Shuang Wu, Xiang Li, Peng Zhang, Xuehui An, Leidong Xie. Thermodynamic Evaluation of NaF-MF n(M=Be, U, Th) Systems for Molten Salt Reactor. Chemical Research in Chinese Universities, 2018, 34(3): 457-463 DOI:10.1007/s40242-018-7398-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beneš O., Beilmann M., Konings R. J. M. J. Nucl. Mater., 2010, 405(2): 186.

[2]

Wang K., Cheng J. H., Zhang P., Zuo Y., Xie L. D. J. Univ. Sci. Technol. B, 2014, 36(12): 1666.

[3]

Beneš O., Konings R. J. M. J. Chem. Thermodyn., 2009, 41(10): 1086.

[4]

Thoma R. E., Insley H., Hebert G. M., Friedman H. A., Weaver C. F. J. Amer. Ceram. Soc., 1963, 46(1): 37.

[5]

Capelli E., Beneš O., Beilmann M., Konings R. J. M. J. Chem. Thermodyn, 2013, 58: 110.

[6]

Delpech S., Merle-Lucotte E., Heuer D., Allibert M., Ghetta V., Le-Brun C., Doligez X., Picard G. J. Fluor. Chem., 2009, 130: 11.

[7]

Forsberg C. W., Peterson P. F., Pickard P. S. Nucl. Technol., 2003, 144: 289.

[8]

Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F. Chem. Res. Chinese Universities, 2015, 31(3): 461.

[9]

Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F. Chem. J. Chinese Universities, 2014, 35(12): 2668.

[10]

An X. H., Zhang P., Cheng J. H., Cheng S. L., Wang J. Q. Chem. Res. Chinese Universities, 2017, 33(1): 122.

[11]

Capelli E., Beneš O., Konings R. J. M. J. Nucl. Mater., 2014, 449(1―3): 111.

[12]

Wang K., Zuo Y., Zhang P., Xie L. D. Technological Report from TMSR Center, Shanghai Institute of Applied Physics, 2015.

[13]

Chartrand P., Pelton A. D. Metall. Mater. Trans., 2001, 32A: 1417.

[14]

Salanne M., Simon C., Turq P., Madden P. A. J. Phys. Chem. B, 2007, 111: 4678.

[15]

Margules M. Sitzungsber. Akad. Wiss. Wien., 1895, 104: 1243.

[16]

Borelius G. Annalen. der. Physik., 1934, 20: 57.

[17]

Redlich O., Kister A. T. Ind. Eng. Chem. Res., 1948, 40: 345.

[18]

Bale C. W., Pelton A. D. Metall. Trans., 1974, 5: 2323.

[19]

Toth L. M., Bates J. B., Boyd G. E. J. Phys. Chem., 1973, 77(2): 216.

[20]

Roy D. M., Roy R., Osborn E. F. J. Am. Ceram. Soc., 1950, 33(3): 85.

[21]

Roy D. M., Roy R., Osborn E. F. J. Am. Ceram. Soc., 1953, 36(6): 185.

[22]

Dobrokhotova Z. V., Zakharova B. S. Inst. Obshch. Neorg. Khim. Neorg. Mater., 1994, 30(4): 510.

[23]

Cantor S. J. Phys. Chem., 1961, 65: 2208.

[24]

Levina M. E., Izvest V. U. Z. Khim. Khim. Tekhnol., 1967, 10(2): 128.

[25]

Novoselova A. V., Levina M. E., Savel’eva M. P. Zh. Neorg. Khim., 1958, 3: 2562.

[26]

Novoselova A. V., Levina M. E., Simanov Y. P., Zhasmin A. G. Zh. Obshch. Khim., 1944, 14: 385.

[27]

Thoma R. E. Adv. Molten Salt Chem., 1975, 3: 275.

[28]

Thilo E., Schröder H. Z. Phys. Chem., 1951, 197: 39.

[29]

Barton C. J., Friedman H. A., Grimes W. R., Insley H., Moore R. E., Thoma R. E. J. Am. Ceram. Soc., 1958, 41: 66.

[30]

Zachariasen W. H. J. Am. Chem. Soc., 1948, 70: 2147.

[31]

Thoma R. E., Insley H., Landau B. S., Friedman H. A., Grime W. R. J. Phys. Chem., 1959, 63: 1266.

[32]

Sidorov L. N., Zhuravleva L. V., Varkov M. V., Skokan E.V., Sorokin I. D., Korenev Y. M., Akishin P. A. Int. J. Mass Spectrom. Ion Processes, 1983, 51(2/3): 291.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/