Synthesis of Polycarbonate Diols(PCDLs) via Two-step Process Using CH3COONa as an Effective Catalyst

Menglu Song , Xiangui Yang , Gongying Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 578 -583.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 578 -583. DOI: 10.1007/s40242-018-7390-0
Article

Synthesis of Polycarbonate Diols(PCDLs) via Two-step Process Using CH3COONa as an Effective Catalyst

Author information +
History +
PDF

Abstract

Polycarbonate diols(PCDLs) with a number average molecular weight(M n) of 2800 and a narrow polydispersity index(PDI=1.33) were synthesized from dimethyl carbonate(DMC) and 1,4-butanediol(BD) via a two-step process. The influences of the molar ratios of DMC to BD in the feedstock, polycondensation temperature and polycondensation time on the PCDLs preparation were studied. CH3COONa showed the best catalytic performance among the catalysts studied. The highest BD conversion of 73.8% and PCDLs yield of 64.7% were achieved under its optimum reaction conditions. Furthermore, based on the results of 1H NMR, the relationships between the ratio of end groups (—OCH3/—OH) of oligomers, the M n and chainend constitute of resultant polycarbonates were also investigated. The results indicate that PCDLs can be synthesized when the oligomers mostly bear hydroxyl end groups. In contrast, it was impossible to prepare PCDLs when the oligomers were enriched with methyl carbonate end groups.

Keywords

Polycarbonate diol(PCDL) / CH3COONa / Two-step process

Cite this article

Download citation ▾
Menglu Song, Xiangui Yang, Gongying Wang. Synthesis of Polycarbonate Diols(PCDLs) via Two-step Process Using CH3COONa as an Effective Catalyst. Chemical Research in Chinese Universities, 2018, 34(4): 578-583 DOI:10.1007/s40242-018-7390-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeon J. Y., Hwang E. Y., Eo S. C., Lee B. Y. Polym. Sci., Part A: Polym. Chem., 2014, 52(11): 1570.

[2]

Singh H., Jain A. K. J. Appl. Polym. Sci., 2009, 111(2): 1115.

[3]

Garcia-Pacios V., Costa V., Colera M., Martin-Martinez J. M. Int. J. Adhes. Adhes., 2010, 30(6): 456.

[4]

Garcia-Pacios V., Colera M., Iwata Y., Martin-Martinez J. M. Prog. Org. Coat., 2013, 76(12): 1726.

[5]

Serkis M., Poreba R., Hodan J., Kredatusova J., Spirkova M. J. Appl. Polym. Sci., 2015, 132(42): 42672.

[6]

Sun J. J., Kuckling D. Polym. Chem., 2016, 7(8): 1642.

[7]

Qin Y. S., Sheng X. F., Liu S. J., Ren G. J., Wang X. H., Wang F. S. J. CO2 Util., 2015, 11: 3.

[8]

Liu Y., Ren W. M., He K. K., Zhang W. Z., Li W. B., Wang M., Lu X. B. J. Org. Chem., 2016, 81(19): 8959.

[9]

Liu Y., Zhou H., Guo J. Z., Ren W. M., Lu X. B. Angew. Chem. Int. Ed., 2017, 56(17): 4862.

[10]

Coates G. W., Moore D. R. Angew. Chem. Int. Ed., 2004, 43(48): 6618.

[11]

Anderson C. E., Vagin S. I., Xia W., Jin H., Rieger B. Macromolecules, 2012, 45(17): 6840.

[12]

Park J. H., Jeon J. Y., Lee J. J., Jang Y., Varghese J. K., Lee B. Y. Macromolecules, 2013, 46(9): 3301.

[13]

Zhang J., Zhu W. X., Li C.C., Zhang D., Xiao Y. N., Guan G. H., Zheng L.C. RSC Adv., 2015, 5(3): 2213.

[14]

Zhu W. X., Huang X., Li C. C., Xiao Y. N., Zhang D., Guan G. H. Polym. Int., 2011, 60(7): 1060.

[15]

Jiang Z. Z., Liu C., Gross R. A. Macromolecules, 2008, 41(13): 4671.

[16]

Matsumura S., Harai S., Toshima K. Macromol. Chem. Physics, 2000, 201(14): 1632.

[17]

Xu J.W., Feng E., Song J. J. Appl. Polym. Sci., 2014, 131(5): 39822.

[18]

Wang Z. Q., Yang X. G., Liu S. Y., Hu J., Zhang H., Wang G. Y. RSC Adv., 2015, 5(106): 87311.

[19]

Wang Z. Q., Yang X. G., Liu S. Y., Zhang H., Wang G. Y. Chem. Res. Chinese Universities, 2016, 32(3): 512.

[20]

Pitor P., Gabriel R. Polymer, 2004, 45(10): 3125.

[21]

Tomita K., Ida H. Polymer, 1975, 16(3): 185.

[22]

Gowda R. R., Chakraborty D. J. Mol. Catal. A: Chem., 2010, 333(1): 167.

[23]

Gowda R. R., Chakraborty D. J. Mol. Catal. A: Chem., 2011, 349(2): 86.

[24]

Li Q., Zhu W. X., Li C.C., Guan G. H., Zhang D., Xiao Y. N., Zheng L.C. Polym. Sci., Part A: Polym. Chem., 2013, 51(6): 1387.

[25]

Zhang T. J., Yang X. G., Li J. G., Hu Y., Wang G. Y. Acta Polym. Sin., 2012, 1: 63.

[26]

Jofre-Reche J. A., Garcia-Pacios V., Costa V., Colera M., Martin-Martinez J. M. Prog. Org. Coat., 2015, 88: 199.

[27]

Liu N., Zhao Y. H., Kang M. Q., Wang J. W., Wang X. K., Feng Y. L., Yin N., Li Q. F. Prog. Org. Coat., 2015, 82: 46.

[28]

Spirkova M., Poreba R., Pavlicevic J., Kobera L., Baldrian J., Pekarek M. J. Appl. Polym. Sci., 2012, 126(3): 1016.

[29]

Jiang Z. Z., Liu C., Xie W. C., Gross R. A. Macromolecules, 2007, 40(22): 7934.

[30]

Foy E., Farrell J. B., Higginbotham C. L. J. Appl. Polym. Sci., 2009, 111(1): 217.

[31]

Wang Z. Q., Yang X. G., Li J. G., Liu S. Y., Wang G. Y. J. Mol. Catal. A: Chem., 2016, 424: 77.

[32]

Naik P. U., Refes K., Sadaka F., Brachais C. H., Boni G., Couvercelle J. P., Picquet M., Plasseraud L. Polym. Chem., 2012, 3(6): 1475.

[33]

Wang J., Zheng L. C., Li C. C., Zhu W. X., Zhang D., Guan G. H., Xiao Y. N. Ind. Eng. Chem. Res., 2012, 51(33): 10785.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/