Preparation of Monodispersed Carbon Spheres via Hydrothermal Carbonization of Ascorbic Acid and Their Application in Lithium Ion Batteries

Xuejiao Zhou , Liangyou Xu , Xiyao Liu , Junjun Zhang , Hongchao Diao , Xiaohua Ma

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 628 -634.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 628 -634. DOI: 10.1007/s40242-018-7382-0
Article

Preparation of Monodispersed Carbon Spheres via Hydrothermal Carbonization of Ascorbic Acid and Their Application in Lithium Ion Batteries

Author information +
History +
PDF

Abstract

Hydrothermal carbonization is one of the most appealing strategies to prepare carbon spheres(CSs). Nevertheless, the precursors of hydrothermal carbonization are limited to several saccharides currently and the obtained CSs are easily interconnected among each other, giving rise to difficulties in further treatment and applications. In this work, ascorbic acid was used as precursor in the hydrothermal procedure and monodispersed CSs could be fabricated without any catalysts. In addition, the composites of CSs and chemical reduced graphene oxide(CRG) possessing three dimensional network structures were fabricated, which exhibited excellent electrochemical performance used as anode in lithium ion battery(LIB). Meanwhile, the effects of size distributions of CSs on the electrochemical performances were evaluated.

Keywords

Carbon sphere / Graphene / Lithium ion battery / Ascorbic acid

Cite this article

Download citation ▾
Xuejiao Zhou, Liangyou Xu, Xiyao Liu, Junjun Zhang, Hongchao Diao, Xiaohua Ma. Preparation of Monodispersed Carbon Spheres via Hydrothermal Carbonization of Ascorbic Acid and Their Application in Lithium Ion Batteries. Chemical Research in Chinese Universities, 2018, 34(4): 628-634 DOI:10.1007/s40242-018-7382-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng H. B., Hu H., Dong H. W., Xiao Y., Cai Y. J., Lei B. F., Liu Y. L., Zheng M. T. J. Power Sources, 2016, 302: 164.

[2]

Yang Y., Luo L. M., Du J. J., Li S. S., Zhang R. H., Dai Z. X., Zhou X. W. Int. J. Hydrogen Energ., 2016, 41: 12062.

[3]

Zhou L. C., Shao Y. M., Liu J. R., Ye Z. F., Zhang H., Ma J. J., Jia Y., Gao W. J., Li Y. F. ACS Applied Materials & Interfaces, 2014, 6: 7275.

[4]

Wickramaratne N. P., Xu J. T., Wang M., Zhu L., Dai L. M., Jaroniec M. Chem. Mater., 2014, 26: 2820.

[5]

Liu S. X., Sun J., Huang Z. H. Journal of Hazardous Materials, 2010, 173: 377.

[6]

Song L. T., Wu Z. Y., Liang H. W., Zhou F., Yu Z. Y., Xu L., Pan Z., Yu S. H. Nano Energy, 2016, 19: 117.

[7]

Wang X., Hu P., Yuan F. L., Yu L. J. Phys. Chem. C, 2007, 111: 6706.

[8]

Yang F. H., Yu F., Zhang Z. A., Zhang K., Lai Y. Q., Li J. Chem. Eur. J., 2016, 22: 2333.

[9]

Zhang W. M., Hu J. S., Guo Y. G., Zheng S. F., Zhong L. S., Song W. G., Wan L. J. Adv. Mater., 2008, 20: 1160.

[10]

Lei Z. B., Christov N., Zhao X. S. Energy Environ. Sci., 2011, 4: 1866.

[11]

Guo C. X., Li C. M. Energy Environ. Sci., 2011, 4: 4504.

[12]

Zhu C. Y., Akiyama T. Green Chem., 2016, 18: 2106.

[13]

Liu R., Mahurin S. M., Li C., Unocic R. R., Idrobo J. C., Gao H. J., Pennycook S. J., Dai S. Angew. Chem. Int. Ed., 2011, 50: 6799.

[14]

Xia Y. D., Mokaya R. Chem. Mater., 2005, 17: 1553.

[15]

Qian H. S., Han F. M., Zhang B., Guo Y. C., Yue J., Peng B. X. Carbon, 2004, 42: 761.

[16]

Qiu J. S., Li Y. F., Wang Y. P., Liang C. H., Wang T. H., Wang D. H. Carbon, 2003, 41: 767.

[17]

Hou J. H., Cao T., Idrees F., Cao C. B. Nanoscale, 2016, 8: 451.

[18]

Tang J., Liu J., Salunkhe R. R., Wang T., Yamauchi Y. Chem. Commun., 2016, 52: 505.

[19]

Hu B., Wang K., Wu L. H., Yu S. H., Antonietti M., Titirici M. M. Adv. Mater., 2010, 22: 813.

[20]

Sevilla M., Fuertes A. B. Chem. Eur. J., 2009, 15: 4195.

[21]

Yao C. H., Shin Y., Wang L. Q., Samuels W. D., Arey B. W., Wang C. M., Exarhos G. J. J. Phys. Chem. C, 2007, 111: 15141.

[22]

Zhang M., Yang H., Liu Y. N., Sun X. D., Zhang D. K., Xue D. F. Carbon, 2012, 50: 2155.

[23]

Yuan D. S., Chen J. X., Zeng J. H., Tan S. X. Electrochem. Commun., 2008, 10: 1067.

[24]

Cui X., Antonietti M., Yu S. H. Small, 2006, 2: 756.

[25]

Sevilla M., Fuertes A. B. Carbon, 2009, 47: 2281.

[26]

Ryu J., Suh Y. W., Suh D. J., Ahn D. J. Carbon, 2010, 48: 1990.

[27]

Liu S. W., Wang X. B., Zhao H. J., Cai W. P. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, 484: 386.

[28]

Demir-Cakan R., Baccile N., Antonietti M., Titirici M. M. Chem. Mater., 2009, 21: 484.

[29]

Zheng S. J., Zhu T., Chen Y., Lin C., Chen Y. G., Guo H. B., J. Nanopart. Res., 2014, 16

[30]

Yang Y. Q., Pang R. Q., Zhou X. J., Zhang Y., Wu H. X., Guo S. W. J. Mater. Chem., 2012, 22: 23194.

[31]

Yan J., Wu H. X., Shen W. Z., Guo S. W. RSC Adv., 2016, 6: 37555.

[32]

Zhang L., Lou X. W. Chemistry, 2014, 20: 5219.

[33]

Zhou X. J., Zhang J. L., Wu H. X., Yang H. J., Zhang J. Y., Guo S. W. J. Phys. Chem. C, 2011, 115: 11957.

[34]

Pan D. Y., Wang S., Zhao B., Wu M. H., Zhang H. J., Wang Y., Jiao Z. Chemistry of Materials, 2009, 21: 3136.

[35]

Nieto-Márquez A., Romero R., Romero A., Valverde J. L. J. Mater. Chem., 2011, 21: 1664.

[36]

Zhou X. J., Xu L. Y. Chem. Res. Chinese Universities, 2017, 33(5): 689.

[37]

Zhang W. Y., Wang Z. X., Shen Y., Xi M. Y., Chu X. B., Xi C. Y. Chem. Res. Chinese Universities, 2015, 31(6): 1007.

[38]

Zhou G., Wang D. W., Yin L. C., Li N., Li F., Cheng H. M. ACS Nano, 2012, 6: 3214.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/