Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation

Fuqin Han , Zhe Zhang , Na Niu , Jian Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 635 -642.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 635 -642. DOI: 10.1007/s40242-018-7381-1
Article

Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation

Author information +
History +
PDF

Abstract

To fabricate high-density cobalt-based catalysts, we first synthesized SiO2/C composites via a hydrothermal method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP), energy dispersive X-ray fluoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superparamagnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, demonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.

Keywords

Mesoporous SiO2 / Carbon nanotube / Cobalt based catalyst / Fischer-Tropsch reaction / CO2 hydrogenation

Cite this article

Download citation ▾
Fuqin Han, Zhe Zhang, Na Niu, Jian Li. Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation. Chemical Research in Chinese Universities, 2018, 34(4): 635-642 DOI:10.1007/s40242-018-7381-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bruce L., Takos J., Turney T. W. ACS Symposium Series, 1990, 437: 129.

[2]

Rodriguez Vallejo D. F., de Klerk A. Energy & Fuels, 2013, 27(6): 3137.

[3]

Fischer N., Clapham B., Feltes T., Claeys M. ACS Catalysis, 2015, 5(1): 113.

[4]

de Klerk A., de Vaal P. L. Industrial & Engineering Chemistry Research., 2008, 47(18): 6870.

[5]

Dai Y. Y., Yu F., Li Z. J., An Y. L., Lin T. J., Yang Y. Z., Zhong L. S., Wang H., Sun Y. H. Chinese Journal of Chemistry, 2017, 35(6): 918.

[6]

Kibby C., Jothimurugesan K., Das T., Lacheen H. S., Rea T., Saxton R. J. Catalysis Today, 2013, 215: 131.

[7]

Arsalanfar M., Mirzaei A. A., Bozorgzadeh H. R. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 478.

[8]

Khusnutdinova J. R., Garg J. A., Milstein D. ACS Catalysis, 2015, 5(4): 2416.

[9]

Xiang Y. Z., Chitry V., Liddicoat P., Felfer P., Cairney J., Ringer S., Kruse N. Journal of the American Chemical Society, 2013, 135(19): 7114.

[10]

Chen Y., Choi S., Thompson L. T. ACS Catalysis, 2015, 5(3): 1717.

[11]

Yang X. F., Kattel S., Senanayake S. D., Boscoboinik J. A., Nie X. W., Graciani J., Rodriguez J. A., Liu P., Stacchiola D. J., Chen J. G. G. J. Am. Chem. Soc., 2015, 137(32): 10104.

[12]

Zhang P., Tong J. L., Huang K. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7056.

[13]

Ma D. W., Niu S. T., Zhao J. L., Jiang X., Jiang Y. W., Zhang X. J., Sun T. M. Chinese Journal of Chemistry, 2017, 35(11): 1661.

[14]

Wang C. Z., Zhang Y., Wang Y. Z., Zhao Y. X. Chinese Journal of Chemistry, 2017, 35(1): 113.

[15]

Chang F. W., Hsiao T. J., Shih J. D. Industrial & Engineering Chemistry Research, 1998, 37(10): 3838.

[16]

Peng G. W., Sibener S. J., Schatz G. C., Ceyer S. T., Mavrikakis M. Journal of Physical Chemistry C, 2012, 116(4): 3001.

[17]

Hutschka F., Dedieu A., Eichberger M., Fornika R., Leitner W. J. Am. Chem. Soc., 1997, 119(19): 4432.

[18]

Theleritis D., Souentie S., Siokou A., Katsaounis A., Vayenas C. G. ACS Catalysis, 2012, 2(5): 770.

[19]

Fong H., Peters J. C. Inorganic Chemistry, 2015, 54(11): 5124.

[20]

Yu H. F., Liao P. Q. Chem. Res. Chinese Universities, 2016, 32(3): 390.

[21]

Spentzos A. Z., Barnes C. L., Bernskoetter W. H. Inorganic Chemistry, 2016, 55(16): 8225.

[22]

Liu H., Yang S. Z., Wang F., Bai C. X., Hu Y. M., Zhang X. Q. Chin. J. Polym. Sci., 2016, 34(9): 1060.

[23]

Su B., Cao Z. C., Shi Z. J. Accounts of Chemical Research, 2015, 48(3): 886.

[24]

Melaet G., Ralston W. T., Li C. S., Alayoglu S., An K. J., Musselwhite N., Kalkan B., Somorjai G. A. J. Am. Chem. Soc., 2014, 136(6): 2260.

[25]

Jeletic M. S., Helm M. L., Hulley E. B., Mock M. T., Appel A. M., Linehan J. C. ACS Catalysis, 2014, 4(10): 3755.

[26]

Grandjean D., Pelipenko V., Batyrev E. D., van den Heuvel J. C. Khassin A. A., Yurieva T. M., Weckhuysen B. M., Journal of Physical Chemistry C, 2011, 115(41): 20175.

[27]

Xu S. C., Walter E. D., Zhao Z. C., Hu M. Y., Han X. W., Hu J. Z., Bao X. H. Journal of Physical Chemistry C., 2015, 119(36): 21219.

[28]

Kwak J. H., Kovarik L., Szanyi J. ACS Catalysis, 2013, 3(11): 2449.

[29]

Lwin S., Wachs I. E. ACS Catalysis, 2016, 6(1): 272.

[30]

Hu H., Cai S. X., Li H. R., Huang L., Shi L. Y., Zhang D. S. ACS Catalysis, 2015, 5(10): 6069.

[31]

Lu C. Q., Liu J. H., Jin C., Guo Y., Wang G. C. Chem. Res. Chinese Universities, 2017, 33(3): 406.

[32]

Xie H., Lu J. L., Shekhar M., Elam J. W., Delgass W. N., Ribeiro F. H., Weitz E., Poeppelmeier K. R. ACS Catalysis, 2013, 3(1): 61.

[33]

Samson K., Śliwa M. Socha R. P., Góra-Marek. K., Mucha D., Rutkowska-Zbik D., Paul J. F., Ruggiero-Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catalysis, 2014, 4(10): 3730.

[34]

Zhang C. W., Xu L. B., Shan N. N., Sun T. T., Chen J. F., Yan Y. S. ACS Catalysis, 2014, 4(6): 1926.

[35]

Duan L. L., Fu R., Xiao Z. G., Zhao Q. F., Wang J. Q., Chen S. J., Wan Y. ACS Catalysis, 2015, 5(2): 575.

[36]

Li N., Wang X. M., Derrouiche S., Haller G. L., Pfefferle L. D. ACS Nano., 2010, 4(3): 1759.

[37]

Pentsak E. O., Gordeev E. G., Ananikov V. P. ACS Catalysis, 2014, 4(11): 3806.

[38]

Chen Y., Chen H. R., Shi J. L. Accounts of Chemical Research, 2014, 47(1): 125.

[39]

Fu T., Cheng R. H., He X. L., Liu Z., Tian Z., Liu B. P. Chin. J. Polym. Sci., 2017, 35(6): 739.

[40]

Lin X., Fu L. L., Chen Y., Zhu R. L., Wang S. Y., Liu Z. G. ACS Applied Materials & Interfaces, 2016, 8(40): 26809.

[41]

Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P. Chem. Res. Chinese Universities, 2016, 32(5): 843.

[42]

den Otter J. H., Nijveld S. R., de Jong K. P. ACS Catalysis, 2016, 6(3): 1616.

[43]

Vosoughi V., Badoga S., Dalai A. K., Abatzoglou N. Industrial & Engineering Chemistry Research, 2016, 55(21): 6049.

[44]

Fu T. J., Lv J., Li Z. H. Industrial & Engineering Chemistry Research, 2014, 53(4): 1342.

[45]

Kuo C. H., Li W. K., Song W. Q., Luo Z., Poyraz A. S., Guo Y., Ma A. W. K., Suib S. L., He J. ACS Applied Materials & Interfaces, 2014, 6(14): 11311.

[46]

Chen B., Chen J., Li J. Y., Tong X., Zhao H. C., Wang L. P. Chin. J. Polym. Sci., 2017, 35(3): 446.

[47]

Guo Y. L., Zhang R. Z., Wu K., Chen F., Fu Q. Chin. J. Polym. Sci., 2017, 35(12): 1497.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/