Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium Bromide Micelle

Di Zhang , Liming Tan , Jia Dong , Jiaqiang Yi , Peng Wang , Jianping Zhang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 643 -648.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 643 -648. DOI: 10.1007/s40242-018-7379-8
Article

Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium Bromide Micelle

Author information +
History +
PDF

Abstract

The β-carotene(β-Car) aggregate was prepared by self-assembly in cetyltrimethylammonium bromide (CTAB) micelle. The ground state absorption measurement showed that the aggregate has J-type characteristics and resonance Raman spectra gave the intrinsic explanation of molecular interaction in aggregate. Upon excitation at the optical allowed S 2 state of aggregate, direct generation of triplet state via singlet fission(SF) mechanism was observed. Excitation dynamics was elucidated by fs-transient absorption spectroscopy and ns-flash photolysis, respectively. The triplet state life time of aggregate was found to be independent of the ambient oxygen molecules.

Keywords

β-Carotene aggregate / Cetyltrimethylammonium bromide micelle / Singlet fission / Triplet state / Excitation state dynamics

Cite this article

Download citation ▾
Di Zhang, Liming Tan, Jia Dong, Jiaqiang Yi, Peng Wang, Jianping Zhang. Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium Bromide Micelle. Chemical Research in Chinese Universities, 2018, 34(4): 643-648 DOI:10.1007/s40242-018-7379-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Köhn S., Kolbe H., Korger M., Köpsel C., Mayer B., Auweter H., Lüddecke E., Bettermann H., Martin H. D. Ed. by Britton G., Liaaen-Jensen S., Pfander H., Carotenoids, 2008.

[2]

Gruszecki W. I., Zelent B., Leblan R. M. Chem. Phys. Lett., 1990, 171(5): 563.

[3]

Köpsel C., Möltgen H., Schuch H., Auweter H., Kleinermanns K., Martin H. D., Bettermann H. J. Mol. Struct., 2005, 750(1—3): 109.

[4]

Spano F. C. J. Am. Chem. Soc., 2009, 131(12): 426.

[5]

Wang C., Berg C. J., Hsu C. C., Merrill B. A., Tauber M. J. J. Phys. Chem. B, 2012, 116(35): 10617.

[6]

Adamkiewicz P., Sujak A., Gruszecki W. I. J. Mol. Struct., 2013, 1046(1046): 44.

[7]

Hempel J., Schädle C. N., Leptihn S., Carle R., Schweiggert R. M. J. Photochem. Photobiol. A, 2016, 317: 161.

[8]

Zajac G., Kaczor A. Pallares Zazo A., Mlynarski J., Dudek M., Ba-ranska M., J. Phys. Chem. B, 2016, 120(17): 4028.

[9]

Saito S., Tasumi M., Eugster C. H. J. Raman Spectrosc., 1983, 14(14): 299.

[10]

Hashimoto H., Kiyohara D., Kamo Y., Komuta H., Mori Y. Jpn. J. Appl. Phys., 1996, 35(1): 281.

[11]

Mori Y. J. Raman Spectrosc., 2001, 32(6/7): 543.

[12]

Gaier K., Angerhofer A., Wolf H. C. Chem. Phys. Lett., 1991, 187(1/2): 10.

[13]

Mori Y., Yamano K., Hashimoto H. Chem. Phys. Lett., 1996, 254(1): 84.

[14]

Okamoto H., Hamaguchi H. O., Tasumi M. J. Raman Spectrosc., 1989, 20(11): 751.

[15]

Zsila F., Bikádi Z., Keresztes Z., Deli J., Simonyi M. J. Phys. Chem. B, 2001, 105(39): 9413.

[16]

Spano F. C. Acc. Chem. Res., 2010, 43(3): 429.

[17]

Alster J., Polívka T., Arellano J. B., Chábera P., Vácha F. Chem. Phys., 2010, 373(1): 90.

[18]

Cvetkovic D., Fiedor L., Wisniewskabecker A., Markovic D. Curr. Anal. Chem., 2013, 9(1): 86.

[19]

Polyakov N. E., Magyar A., Kispert L. D. J. Phys. Chem. B, 2013, 117(35): 10173.

[20]

Kita S., Fujii R., Cogdell R. J., Hashimoto H. J. Photochem. Photo-biol. A, 2015, 313: 3.

[21]

Chang H. T., Chang Y. Q., Han R. M., Wang P., Zhang J. P., Skibsted L. H. J. Agric. Food Chem., 2017, 65(29): 6058.

[22]

Smith M. B., Michl J. Chem. Rev., 2010, 110(11): 6891.

[23]

Wang X. F., Wang L., Wang Z., Wang Y., Tamai N., Hong Z., Kido J. J. Phys. Chem. C, 2013, 117(2): 804.

[24]

Billsten H. H. Villy Sundström A., Polívka T., J. Phys. Chem. A, 2005, 109(8): 1521.

[25]

Wang C., Tauber M. J. J. Am. Chem. Soc., 2010, 132(40): 13988.

[26]

Wang C., Angelella M., Kuo C. H., Tauber M. J. Proc. SPIE, 2012, 8459: 845905.

[27]

Fuciman M., Durchan M., Šlouf V., Keşan G., Polívka T. Chem. Phys. Lett., 2013.

[28]

Musser A. J., Maiuri M., Brida D., Cerullo G., Friend R. H., Clark J. J. Am. Chem. Soc., 2015, 137(15): 5130.

[29]

Yu J., Fu L. M., Yu L. J., Shi Y., Wang P., Wang-Otomo Z. Y., Zhang J. P. J. Am. Chem. Soc., 2017, 139(44): 15984.

[30]

Liu L. H., Wang C. F., Zhuo K. L. Chem. Res. Chinese Universities, 2016, 32(6): 992.

[31]

Auweter H., Haberkorn H., Heckmann W., Horn D., Lüddecke E., Rieger J., Weiss H. Angew. Chem. Int. Ed., 1999, 38(15): 2188.

[32]

Tschirner N., Schenderlein M., Brose K., Schlodder E., Mroginski M. A., Thomsen C., Hildebrandt P. Phys. Chem. Chem. Phys., 2009, 11(48): 11471.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/