Hybrid Hydrogels Toughened by Chemical Covalent Bonding and Physical Electrostatic Interactions

Li Liu , Ge Pan , Licheng Wang , Xiuyan Ren , Xinyue Zhang , Guangfeng Wu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 500 -505.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 500 -505. DOI: 10.1007/s40242-018-7375-z
Article

Hybrid Hydrogels Toughened by Chemical Covalent Bonding and Physical Electrostatic Interactions

Author information +
History +
PDF

Abstract

Polystyrene nanoparticles with negative charges(n-PSs) were synthesized using styrene(St) and sodium styrene sulfonate(NaSS) as initial materials by surfactant-free emulsion polymerization. Subsequently, a hybrid hydrogel was prepared using acrylamide(AAm) and methacryloyloxyethyltrimethyl ammonium chloride(DMC) as co-monomers with N,N′-methylenebisacrylamide(MBA) as a chemical crosslinker and n-PSs as a physical electro- static interaction agent. The resulting hybrid hydrogels exhibited excellent tensile strength and elongation at break. The tensile stress of hybrid hydrogels was seven times greater than that of hydrogels without n-PSs. The elongation at break of hydrogels reached 700%, which was much higher compared to those of the hydrogels without n-PSs. Furthermore, swelling measurements of the hydrogels indicate that there is an overshoot in the swelling process and the extent of overshoot decreases with the increasing n-PSs. Therefore, the work presented here provides a method for improving the mechanical properties of hydrogels via the introduction of polymeric nanoparticles.

Keywords

Hydrogel / Electrostatic interaction / Mechanical property / Swelling property

Cite this article

Download citation ▾
Li Liu, Ge Pan, Licheng Wang, Xiuyan Ren, Xinyue Zhang, Guangfeng Wu. Hybrid Hydrogels Toughened by Chemical Covalent Bonding and Physical Electrostatic Interactions. Chemical Research in Chinese Universities, 2018, 34(3): 500-505 DOI:10.1007/s40242-018-7375-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y., Rodrigues J., Tomás H. Chem. Soc. Rev., 2012, 41: 2193.

[2]

Ye L., Zhang Y. B., Wang Q. S., Zhou X., Yang B. G., Ji F., Dong D. Y., Gao L. N., Cui Y. L., Yao F. L. ACS Appl. Mater. Interfaces, 2016, 8: 15710.

[3]

Dowling M. B., Kumar R., Keibler M. A., Hess J. R., Bochicchio G. V., Raghavanet S. R. Biomaterials, 2011, 32: 3351.

[4]

Lu C., Zahedi P., Forman A., Allen C. J. Pharm. Sci., 2014, 103: 216.

[5]

Kumar A., Tyagi P., Singh H., Kumar Y., Lahiri S. S. J. Appl. Polym. Sci., 2016, 126: 894.

[6]

Gong J. P. Soft Matter., 2010, 6: 2583.

[7]

Webber R. E., Creton C., Brown H. R., Gong J. P. Macromolecules, 2007, 40: 2919.

[8]

Liu C., Liu X., Yu J., Gao G., Liu F. Q. J Appl. Polym. Sci., 2015, 132: 41222.

[9]

Jiang G., Liu C., Liu X., Zhang G. H., Yang M., Liu F. Q. Macromol. Mater. Eng., 2009, 294: 815.

[10]

Henderson K. J., Zhou T. C., Otim K. J., Shull K. R. Macromole-cules, 2010, 43: 6193.

[11]

Song G., Zhang L., He C., Fang D. C., Whitten P. G., Wang H. L. Macromolecules, 2013, 46: 7423.

[12]

Gong J. P., Katsuyama Y., Kurokawa T., Osada Y. Adv. Mater., 2013, 15: 1155.

[13]

Haraguchi K., Takehisa T., Fan S. Macromolecules, 2002, 35: 10162.

[14]

Yu Y., Wang Y. X., Feng C. L. Chem. Rese. Chinese Universities, 2016, 32(5): 872.

[15]

Zhao C. M., Lu X. T., Hu Q. Q., Liu S., Guan S. Chem. Res. Chinese Universities, 2017, 33(6): 995.

[16]

Shi F. K., Zhong M., Zhang L. Q., Liu X. Y., Xie X. M. Acta Poly-merica Sinica, 2017, 3: 491.

[17]

Qiaochu L., Devin G. B., Phillip B., Messer S., Niels H. A. ACS Nano, 2016, 10(1): 1317.

[18]

Yang J., Han C. R., Duan J. F., Xu F., Sun R. C. J. Phys. Chem. C, 2013, 117: 8223.

[19]

Guth E. J. Appl. Phy., 1945, 16: 20.

[20]

Chen Y., Shull K. R. Macromolecules, 2017, 50(9): 3637.

[21]

Carlsson L., Rose S., Hourdet D., Marcellan A. Soft Matter, 2010, 6: 3619.

[22]

Rose S., Dizeux A., Narita T., Hourdet D., Marcellan A. Macromo-lecules, 2013, 46: 4095.

[23]

Huang T., Xu H. G., Jiao K. X., Zhu L. P., Brown H. R., Wang H. L. Adv. Mater., 2007, 19: 1622.

[24]

Wu Y., Zhou Z., Fan Q., Chen L., Zhu M. F. J. Mater. Chem., 2009, 19: 7340.

[25]

Ren X. Y., Yu Z., Liu B., Liu X. J., Wang Y. J., Su Q., Gao G. H. RSC Adv., 2016, 6: 8956.

[26]

Kim J. H., Chainey M., El-Aasser M. S., Vanderhoff J. W. J. Polym. Sci., Part A: Polym. Chem., 1992, 30: 171.

[27]

Liu X. J., Li H. Q., Zhang B. Y., Wang Y. J., Ren X. Y., Guan S., Gao G. H. RSC Adv., 2016, 6: 4850.

[28]

Zhou H. W., Mi L., Liu L. X., Xu S. H., Sun Z. W. Acta Phys. Chim. Sin., 2013, 29: 1260.

[29]

Bhutto A., Vesely D., Gabrys B. Polymer, 2003, 44: 6627.

[30]

Díez-Peña E., Quijada-Garrido I., Barrales-Rienda J. M. Macromo-lecules, 2003, 36: 2475.

[31]

Valencia J., Piérola I. F. J. Appl. Polym. Sci., 2002, 83: 191.

[32]

Díez-Peña E., Quijada-Garrido I., Frutos P., Barrales-Rienda J. M. Macromolecules, 2002, 35: 2667.

[33]

Lee W. F., Shieh C. H. J. Appl. Polym. Sci., 1999, 73: 1955.

[34]

Tanaka T. Sci. Am., 1981, 244: 124.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/