Synthesis of Biphasic Defective TiO2–x/Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity

Guiqi Gao , Qing Zhu , Hanbao Chong , Jun Zheng , Congmin Fan , Guang Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 158 -163.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 158 -163. DOI: 10.1007/s40242-018-7369-x
Article

Synthesis of Biphasic Defective TiO2–x/Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity

Author information +
History +
PDF

Abstract

Biphasic defective TiO2–x/reduced graphene oxide(RGO) nanocomposites were synthesized by simple hydrothermal reactions. Compared with TiO2–x and commercial P25, TiO2–x/RGO shows much better photocatalytic activity and excellent stability in pollutants degradation, which could be ascribed to Ti3+ centers complexed with RGO and the synergetic effect between the two phases. The study reveals a new route for the synthesis of mixed-phase defective TiO2–x/carbon material nanocomposites for photocatalytic applications.

Keywords

Defective biphasic TiO2–x / Graphene sheet / Photocatalysis / Reduced graphene oxide

Cite this article

Download citation ▾
Guiqi Gao, Qing Zhu, Hanbao Chong, Jun Zheng, Congmin Fan, Guang Li. Synthesis of Biphasic Defective TiO2–x/Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity. Chemical Research in Chinese Universities, 2018, 34(2): 158-163 DOI:10.1007/s40242-018-7369-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen X. B., Shen S. H., Guo L. J., Mao S. S. Chem. Rev., 2010, 110: 6503.

[2]

Brown G. E. Jr., Henrich V. E., Casey W. H., Clark D. L., Eggleston C., Felmy A., Goodman D. W., Gratzel M., Maciel G., McCarthy M. I., Nealson K. H., Sverjensky D. A., Toney M. F., Zachara J. M. Chem. Rev., 1999, 99: 77.

[3]

Liu L., Chen X. B. Chem. Rev., 2014, 114: 9890.

[4]

Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C. Chem. Rev., 2014, 114: 9987.

[5]

Fujishima A., Honda K. Nature, 1972, 238: 37.

[6]

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Science, 2001, 293: 269.

[7]

Thompson T. L., Yates J. T. Chem. Rev., 2006, 106: 4428.

[8]

Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q. Nature, 2008, 453: 638.

[9]

Chen X. B., Liu L., Liu Z., Marcus M. A., Wang W. C., Oyler N. A., Grass M. E., Mao B. H., Glans P. A., Yu P. Y., Guo J. H., Mao S. S. Sci. Rep., 2013, 3: 1510.

[10]

Liu X., Gao S. M., Xu H., Lou Z. Z., Wang W. J., Huang B. B., Dai Y. Nanoscale, 2013, 5: 1870.

[11]

Zheng Z. K., Huang B. B., Meng X. D., Wang J. P., Wang S. Y., Lou Z. Z., Wang Z. Y., Qin X. Y., Zhang X. Y., Dai Y. Chem. Commun., 2013, 49: 868.

[12]

Nowotny M. K., Sheppard L. R., Bak T., Nowotny J. J. Phys. Chem. C, 2008, 112: 5275.

[13]

Wang Z., Yang C. Y., Lin T. Q., Yin H., Chen P., Wan D. Y., Xu F. F., Huang F. Q., Lin J. H., Xie X. M., Jiang M. H. Energy Environ. Sci., 2013, 6: 3007.

[14]

Grabstanowicz L. R., Gao S., Li T., Rickard R. M., Rajh T., Liu D. J., Xu T. Inorg. Chem., 2013, 52: 3884.

[15]

Chen X. B., Liu L., Yu P. Y., Mao S. S. Science, 2011, 331: 746.

[16]

Zuo F., Wang L., Wu T., Zhang Z. Y., Borchardt D., Feng P. Y. J. Am. Chem. Soc., 2010, 132: 11856.

[17]

Wang J. Q., Su S. Y., Liu B., Cao M. H., Hu C. W. Chem. Commun., 2013, 49: 7830.

[18]

Fan C. M., Peng Y., Zhu Q., Lin L., Wang R. X., Xu A. W. J. Phys. Chem. C, 2013, 117: 24157.

[19]

Wang J., Shen L. F., Nie P., Xu G. Y., Ding B., Fang S., Dou H., Zhang X. G. J. Mater. Chem. A, 2014, 2: 9150.

[20]

Zhang H., Lv X. J., Li Y. M., Wang Y., Li J. H. ACS Nano, 2010, 4: 380.

[21]

Liang Y. Y., Wang H. L., Casalongue H. S., Chen Z., Dai H. J. Nano Res., 2010, 3: 701.

[22]

Perera S. D., Mariano R. G., Vu K., Nour N., Seitz O., Chabal Y., Balkus K. J. Jr. ACS Catal., 2012, 2: 949.

[23]

Geim A. K., Novoselov K. S. Nature Materials, 2007, 6: 183.

[24]

Cong S., Xu Y. M. J. Phys. Chem. C, 2011, 115: 21161.

[25]

Shah M. S. A. S., Park A. R., Zhang K., Park J. H., Yoo P. J. ACS Appl. Mater. Interfaces, 2012, 4: 3893.

[26]

Carneiro J. T., Savenije T. J., Moulijn J. A., Mul G. J. Phys. Chem. C, 2011, 115: 2211.

[27]

Wang F. L., Ho J. H., Jiang Y. J., Amal R. ACS Appl. Mater. Inter-faces, 2015, 7: 23941.

[28]

Hummers W. S., Offeman R. E. J. Am. Chem. Soc., 1958, 80: 1339.

[29]

Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q. J. Am. Chem. Soc., 2008, 130: 5856.

[30]

Spurr R. A., Myers H. Anal. Chem., 1957, 29: 760.

[31]

Song X. M., Wu J. M., Tang M. Z., Qi B., Yan M. J. Phys. Chem. C, 2008, 112: 19484.

[32]

Rezaee M., Mousavi Khoie S. M., Liu K. H. Cryst. Eng. Comm., 2011, 13: 5055.

[33]

Yan J. Q., Wu G. J., Guan N. J., Li L. D., Li Z. X., Cao X. Z. Phys. Chem. Chem. Phys., 2013, 15: 10978.

[34]

Zhang X. Y., Li H. P., Cui X. L., Li Y. H. J. Mater. Chem., 2010, 20: 2801.

[35]

Parker J. C., Siegel R. W. J. Mater. Res., 1990, 5: 1246.

[36]

Cronemeyer D. C. Phys. Rev., 1959, 113: 1222.

[37]

Zheng Z. K., Huang B. B., Qin X. Y., Zhang X. Y., Dai Y., Whangbo M. H. J. Mater. Chem., 2011, 21: 9079.

[38]

Li J. G., Buchel R., Isobe M., Mori T., Ishigakii T. J. Phys. Chem. C, 2009, 113: 8009.

[39]

Bityurin N., Znaidi L., Kanaev A. Chem. Phys. Lett., 2003, 374: 95.

[40]

Suriye K., Praserthdam P., Jongsomjit B. Appl. Surf. Sci., 2007, 253: 3849.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/