A Label-free and Functional Fluorescent Oligonucleotide Probe Based on a G-Quadruplex Molecular Beacon for the Detection of Kanamycin

Yuqing Zhu , Wei Li , Suzhen Tan , Tianxiao Chen

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 541 -545.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 541 -545. DOI: 10.1007/s40242-018-7366-0
Article

A Label-free and Functional Fluorescent Oligonucleotide Probe Based on a G-Quadruplex Molecular Beacon for the Detection of Kanamycin

Author information +
History +
PDF

Abstract

A label-free and turn-off fluorescent method for the quantitative detection of kanamycin based on a functional molecular beacon was developed. The molecular beacon consists of two hairpin structures with a split G-rich oligonucleotide in the middle. The kanamycin’s aptamer formed the loops portion for recognizing kanamycin, and the G-quadruplex bound by Thioflavin T(ThT) was employed as the reporter. In the absence of target, the molecular beacon folded into double stem-loops and the splited G-rich oligonucleotid came close to form a G-quadruplex. When ThT bound to the G-quadruplex, the fluorescence intensity of the solution increased. Upon the addition of kanamycin, the function between kanamycin and aptamer unfolded the hairpin and disassembled the G-quadraplex structure, resulting in a significant decrease in the fluorescence intensity. A good linear relationship ranging from 0.7 nmol/L to 10 nmol/L was achieved and the limit of detection was 0.37 nmol/L. Besides, it could efficiently recognize kanamycin in real samples.

Keywords

Molecular beacon / Fluorescence / Kanamycin / G-Quadruplex / Thioflavin T

Cite this article

Download citation ▾
Yuqing Zhu, Wei Li, Suzhen Tan, Tianxiao Chen. A Label-free and Functional Fluorescent Oligonucleotide Probe Based on a G-Quadruplex Molecular Beacon for the Detection of Kanamycin. Chemical Research in Chinese Universities, 2018, 34(4): 541-545 DOI:10.1007/s40242-018-7366-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Megoulas N. C., Koupparis M. A. Anal. Chim. Acta, 2005, 547: 64.

[2]

Cox L. A. Clin. Infect. Dis., 2006, 42: 1053.

[3]

Hurd H. S., Enoe C., Sorensen L., Wachman H., Corns S. M., Bryden K. M., Grenier M. Risk Anal., 2008, 28: 695.

[4]

Phillips I., Casewell M., Cox T., de Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J. J. Antimicrob. Chemother., 2004, 54: 276.

[5]

Phillips I., Casewell M., Cox T., de Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J. J. Antimicrob. Chemother., 2004, 53: 28.

[6]

Oertel R., Kirch W. V. J. Chromatogr. A, 2004, 1058: 197.

[7]

Kitasato I., Yokota M., Inouye S., Igarashi M. Chemotherapy, 1990, 36: 155.

[8]

Xing Y. P., Liu C., Zhou X. H. Sci. Rep.-UK, 2015, 5: 8125.

[9]

Chen S. H., Liang Y. C., Chou Y. W. J. Sep. Sci., 2006, 29: 607.

[10]

Wang L. F., Peng J. D. Chromatographia, 2009, 69: 519.

[11]

Blanchaert B., Jorge E. P., Jankovics P., Adams E., Ann V. S. Chro-matographia, 2013, 76: 1505.

[12]

Long Y. H., Hernandez M., Kaale E., van Schepdael R. A. E. Bor-rull F., Calull M., Hoogmartens J., J. Chromatogr., 2003, 784: 255.

[13]

Kaale E., Schepdael A.V., Roets E., Hoogmartens J. Electrophoresis, 2003, 24: 1119.

[14]

Isoherranen N., Soback S. J. AOAC. Int., 1999, 82: 1017.

[15]

Wang X. Y., Zou M. J., Xu X., Lei R., Li K., Li N. Anal. Bioanal. Chem., 2009, 395: 2397.

[16]

Raz S. R., Bremer M. G. E. G., Haasnoot W., Norde W. Anal. Chem., 2009, 81: 7743.

[17]

Frasconi M., Tel-Vered R., Riskin M., Willner I. Anal. Chem., 2010, 82: 2512.

[18]

Althaus R., Berruga M. I., Montero A., Roca M., Molina M. P. Anal. Chim. Acta, 2009, 632: 159.

[19]

Chen Y. Q., Wang Z. Q., Wang Z. H., Tang S. S., Zhu Y., Xiao X. L. J. Agric. Food Chem., 2008, 56: 2944.

[20]

Loomans E. E. M. G., Wiltenburg J. V., Koets M., Amerongen A. V. J. Agric., Food Chem., 2003, 51: 587.

[21]

Tyagi S., Kramer N. F. R. Biotechnol., 1996, 14: 303.

[22]

Morrison L. E., Halder T. C., Stols L. M. Anal. Biochem., 1989, 183: 231.

[23]

Liu B., Yang X., Wang K. Chem. Res. Chinese Universities, 2012, 28(1): 37.

[24]

Kostrikis L. G., Tyagi S., Mhlanga M. M., Ho D. D., Kramer F. R. Science, 1998, 279: 1228.

[25]

Tyagi S., Bratu D. P., Kramer F. R. Nat. Biotechnol., 1998, 16: 49.

[26]

Perlette J., Tan W. Anal. Chem., 2001, 73: 5544.

[27]

Fang X., Li J. J., Tan W. Anal. Chem., 2000, 72: 3280.

[28]

Li J., Tan W., Wang K., Xiao D., Yang X., He X., Tang Z. Anal. Sci., 2001, 17: 1149.

[29]

Tang Z., Wang K., Tan W., Li J., Liu L., Guo Q., Meng X., Ma C., Huang S. Nucleic Acids Res., 2003, 31: e148.

[30]

Li J. J., Geyer R., Tan W. Nucleic Acids Res., 2000, 28: e52.

[31]

Bourdoncle A., Estevez T. A., Gosse C., Lacroix L., Vekhoff P., Le S. T., Jullien L., Mergny J. L. J. Am. Chem. Soc., 2006, 128: 11094.

[32]

Williamson J. R. Annu. Rev. Biophys. Biomol. Struct., 1994, 23: 703.

[33]

Sundquist W. I., Klug A. Nature, 1989, 342: 825.

[34]

Song K. M., Cho M., Jo H., Min K., Jeon S. H., Kim T., Han M. S., Ku J. K., Ban C. Anal. Biochem., 2011, 415: 175.

[35]

Chen T. X., Ning F., Liu H. S., Wu K. F., Li W. Chinese Chem. Lett., 2017, 28: 1380.

[36]

Tong L. L., Li L., Chen Z. Biosens. Bioelectro., 2013, 49: 420.

[37]

Wen Y., Wang L., Li L. Sensors, 2016, 16: 12.

[38]

Stoltenburg R., Nikolaus N., Strehlitz B. J. Anal. Methods Chem., 2012, 14: 383.

[39]

Bhasikuttan A. C., Mohanty J. Chem. Commun., 2015, 51: 7581.

[40]

Tong L., Li L., Chen Z. Biosens. Bioelectron, 2013, 49: 420.

[41]

Nikolaus N., Strehlitz B. Sensors, 2014, 14: 37.

[42]

Amdursky N., Erez Y., Dan H. H. Acc. Chem. Res., 2012, 45: 1548.

[43]

Mohanty J., Barooah N., Dhamodharan V. J. Am. Chem. Soc., 2013, 135: 367.

[44]

Green J., Ying L., Klenerman D. Chem. Res. Chinese Universities, 2002, 18(1): 103.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/