Role of Adamantane Amide Based on L-Proline Double-H Potential Organocatalyst in Aldol Reaction with Product Separated via Host-guest Interaction

Rui Wang , Zhonglin Wei , Jing Guo , Yusha Feng , Enjie Xu , Haifeng Duan , Yingjie Lin , Qingbiao Yang , Jianshi Du , Yaoxian Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 180 -185.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 180 -185. DOI: 10.1007/s40242-018-7364-2
Article

Role of Adamantane Amide Based on L-Proline Double-H Potential Organocatalyst in Aldol Reaction with Product Separated via Host-guest Interaction

Author information +
History +
PDF

Abstract

Chiral organocatalysts of 4-adamantane amide based on L-proline with double hydrogen potential were synthesized and used in asymmetric aldol reactions. The reactions were evaluated in toluene under‒20 °C. A series of aldol products was obtained from moderate to good yields(up to 98%) with excellent diastereoselectivities(up to >99:1) and enantioselectivities(up to >99%). The aldol products in the system were separated by α-cyclodextrin via host-guest interaction and determined by chiral HPLC. The catalyst could be reused up to five times. The 4-substitution position played an important role in diastereoselectivity and enantioselectivity.

Keywords

Prolinamide / Double hydrogen / Aldol reaction / Recycle / Cyclodextrin

Cite this article

Download citation ▾
Rui Wang, Zhonglin Wei, Jing Guo, Yusha Feng, Enjie Xu, Haifeng Duan, Yingjie Lin, Qingbiao Yang, Jianshi Du, Yaoxian Li. Role of Adamantane Amide Based on L-Proline Double-H Potential Organocatalyst in Aldol Reaction with Product Separated via Host-guest Interaction. Chemical Research in Chinese Universities, 2018, 34(2): 180-185 DOI:10.1007/s40242-018-7364-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sukumaran J., Hanefeld U. Chem. Soc. Rev., 2005, 34(6): 530.

[2]

García-Urdiales E., Alfonso I., Gotor V. Chem. Rev., 2005, 105(1): 313.

[3]

Sasaoka A., Uddin M. I., Shimomoto A., Ichikawa Y., Shiro M., Kotsukia H. Tetrahedron: Asymmetry, 2006, 17(21): 2963.

[4]

Desimoni G., Faita G., Jørgensen K. A. Chem. Rev., 2006, 106(9): 3561.

[5]

Mlynarski J., Paradowska J. Chem. Soc. Rev., 2008, 37(8): 1502.

[6]

Naodovic M., Yamamoto H. Chem. Rev., 2008, 108(8): 3132.

[7]

Bartók M. Chem. Rev., 2010, 110(3): 1663.

[8]

Trost B. M., Brindle C. S. Chem. Soc. Rev., 2010, 39(5): 1600.

[9]

Selander N. J., Szabó K. Chem. Rev., 2011, 111(3): 2048.

[10]

Brovetto M., Gamenara D., Saenz M. P., Seoane G. A. Chem. Rev., 2011, 111(7): 4346.

[11]

Mlynarski J., Baś S. Chem. Soc. Rev., 2014, 43(2): 577.

[12]

Wang Y. C., Lin J., Wei K. Tetrahedron: Asymmetry, 2014, 25(24): 1599.

[13]

List B., Lerner R. A., Barbas C. F. J. Am. Chem. Soc., 2000, 122(10): 2395.

[14]

Huang X. R., Liu Q., Wang J., Xiao J. A., Yang H. Tetrahedron: Asymmetry, 2014, 25(24): 1590.

[15]

Tang Z., Jiang F., Yu L., Cui X., Gong L., Mi A., Jiang Y., Wu Y. J. Am. Chem. Soc., 2003, 125(18): 5262.

[16]

Tang Z., Jiang F., Cui X., Gong L. Z., Mi A. Q., Jiang Y. Z., Wu Y. D. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 5755.

[17]

Tang Z., Yang Z. H., Chen X. H., Cun L. F., Mi A. Q., Jiang Y. Z., Gong L. Z. J. Am Chem. Soc., 2005, 127(25): 9285.

[18]

Guizzetti S., Benaglia M., Pignataro L., Puglisi A. Tetrahedron: Asymmetry, 2006, 17(19): 2754.

[19]

Tzeng Z., Chen H., Huang C., Chen K. Tetrahedron Lett., 2008, 49(26): 4134.

[20]

Sato K., Kuriyama M., Shimazawa R., Morimoto T., Kakiuchi K., Shirai R. Tetrahedron Lett., 2008, 49(15): 2402.

[21]

Chimi S. S., Singh S., Mahajan D. Tetrahedron: Asymmetry, 2008, 19(19): 2276.

[22]

Zhang S. P., Fu X. K., Fu S. D., Pan J. F. Catal. Commun., 2009, 10(4): 401.

[23]

Mitsui K., Hyatt S. A., Turner D. A., Hadad C. M., Parquette J. R. Chem. Commun., 2009, 22: 3261.

[24]

Moorthy J. N., Saha S. Eur. J. Org. Chem., 2009, 5: 739.

[25]

Saha S., Moorthy J. N. Tetrahedron Lett., 2010, 51(6): 912.

[26]

Lu Z. J., Mei H. B., Han J. L., Pan Y. Chem. Biol. Drug Des., 2010, 76(2): 181.

[27]

Kinsella M., Duggan P. G., Lennon C. M. Tetrahedron: Asymmetry, 2011, 22(13): 1423.

[28]

Zhang F. R., Li C. M., Qi C. X. Tetrahedron: Asymmetry, 2013, 24(7): 380.

[29]

Eymur S., Akceylan E., Sahin O., Uyanik A., Yilmaz M. Tetrahedron, 2014, 70(30): 4471.

[30]

Akceylana E., Uyanika A., Eymurb S., Sahina O., Yilmaza M., Ak-ceylan E. Applied Catalysis A: General, 2015, 499: 205.

[31]

Yadav G. D., Singh S. Tetrahedron: Asymmetry, 2016, 27: 123.

[32]

Jin H., Cho S. M., Lee J., Ryu D. H. Org. Lett., 2017, 19(9): 2434.

[33]

Izquierdo J., Pericàs M. A. ACS Catal., 2016, 6(1): 348.

[34]

Benaglia M., Cinquini M., Cozzi F., Puglisi A., Celentano G. Adv. Synth. Catal., 2002, 344(5): 533.

[35]

Benaglia M., Puglisi A., Cozzi F. Chem. Rev., 2003, 103(9): 3401.

[36]

Cozzi F. Adv. Synth. Catal., 2006, 348(12/13): 1367.

[37]

Gruttadauria M., Giacalone F., Marculescu A. M. Lo Meo P., Riela S., Noto R., Eur. J. Org. Chem., 2007, 28: 468.

[38]

Lu A., Moatsuo D., Longbottom D. A., O’Reilly R. K. Chem. Sci., 2013, 4(3): 965.

[39]

Xiao J., Li G. W., Zhang W. Chem. Res. Chinese Universities, 2013, 29(2): 256.

[40]

Hu F. Y., Du G. H., Ye L., Zhu Y. T., Wang Y., Jiang L. M. Polymer, 2016, 102: 33.

[41]

Font D., Bastero A., Sayalero S., Jimeno C., Pericas M. A. Org. Lett., 2007, 9(10): 1943.

[42]

Alza E., Rodriguez-Escrich C., Sayalero S., Bastero A., Pericas M. A. Chem. Eur. J., 2009, 15(39): 10167.

[43]

Riente P., Mendoza C., Pericas M. A. J. Mater. Chem., 2011, 21(20): 7350.

[44]

Fan X., Alza E., Pericas M. A. RSC Adv., 2012, 2(14): 6164.

[45]

Riente P., Yadav J., Pericas M. A. Org. Lett., 2012, 14(14): 3668.

[46]

Caminade A. M., Ouali A., Keller M., Majoral J. P. Chem. Soc. Rev., 2012, 41(11): 4113.

[47]

Rasmussen B., Christensen J. B. Org. Biomol. Chem., 2012, 10(25): 4821.

[48]

Vaquer L., Riente P., Sala X., Jansat S., Benet-Buchholz J., Llobet A., Pericas M. A. Catal. Sci. Technol., 2013, 3(3): 706.

[49]

Ribourdouille Y., Engel G. D., Gade L. H. Compets Rendus Chimie, 2003, 6(8―10): 1087.

[50]

Slagt M. Q., Stiriba S. E., Kautz H., Gebbink R. J., Frey H., Koten G. V. Organometallics, 2004, 23(7): 1525.

[51]

Itsuno S., Hassan M. M. RSC Adv., 2014, 4(94): 52023.

[52]

Lu A., Cotanda P., Patterson J. P., Longbottom D. A., O’Reilly R. K. Chem. Commun., 2012, 48(78): 9699.

[53]

Cooke G., Rotello V. M. Chem. Soc. Rev., 2002, 31(5): 275.

[54]

Zhang Y., Wang W., Li Q., Yang Q. B., Li Y. X., Du J. S. Talanta, 2015, 141: 33.

[55]

Cui B. Q., Yu J., Yu F. C., Li Y. M., Chang K. J., Shen Y. H. RSC Adv., 2015, 5(14): 10386.

[56]

Huang W. P., Chen J. R., Li X. Y., Cao Y. J., Xiao W. J. Can. J. Chem., 2007, 85(3): 208.

[57]

Zheng X., Qian Y. B., Wang Y. M. Eur. J. Org. Chem., 2010, 3: 515.

[58]

Yarlagadda S., Ramesh B., Reddy C. R., Srinivas L., Sridhar B., Reddy B. V. Org. Lett., 2017, 19(1): 170.

[59]

Uekama K. H., Irit T. Chem. Rev., 1998, 98: 2045.

[60]

Sun T., Zhang H. C., Yan H., Li J. Y., Cheng G. H., Hao A. Y. Supramol. Chem., 2011, 23(5): 351.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/