Theoretical Studies on Aromaticity of Spiro Metallaaromatics of (C10H10M)2‒(M=Ni, Pd, Pt)

Nannan Liu , Jian Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 470 -474.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 470 -474. DOI: 10.1007/s40242-018-7354-4
Article

Theoretical Studies on Aromaticity of Spiro Metallaaromatics of (C10H10M)2‒(M=Ni, Pd, Pt)

Author information +
History +
PDF

Abstract

Aiming to identify the spiro metallaaromatic systems with potential application value, (C10H10M)2‒(M=Ni, Pd, Pt) derivatives were theoretically investigated. (C10H10M)2‒-Iso1, which has two 6-membered rings(6MRs) connected by the M spiro atom, is a 14π-aromatic as a whole plane. (C10H10M)2‒-Iso2 has one 6π-aromatic 5MR and one 10π-aromatic 7MR connected by the spiro atom. The free (C10H10M)2‒ dianions could not exist due to their rather high frontier orbital energies, while the neutral (C10H10M)Li2 compounds are extremely stable against dissociation. Since (C10H10M)Li2 coumponds are not fully coordinated, they trend to form (C10H10M)Li4 2+ dications, or even [(C10H10M)Li2]n polymers. Arguably, (C10H10M)2‒ planes are not the only examples for spiro metallaaromaticity, their derivatives are also potential material building blocks.

Keywords

Metalloaromaticity / Metallabenzene / Spiro compound / Inverse sandwich / Through-space NMR shielding(TSNMRS)

Cite this article

Download citation ▾
Nannan Liu, Jian Wang. Theoretical Studies on Aromaticity of Spiro Metallaaromatics of (C10H10M)2‒(M=Ni, Pd, Pt). Chemical Research in Chinese Universities, 2018, 34(3): 470-474 DOI:10.1007/s40242-018-7354-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gilbertson R. D., Lau T. L. S., Lanza S., Wu H., Weakley T. J. R., Haley M. M. Organometallics, 2003, 22: 3279.

[2]

Rickard C. E. F., Roper W. R., Woodgate S. D., Wright L. J. J. Or-ganomet. Chem., 2001, 623: 109.

[3]

Landorf C. W., Jacob V., Weakley T. J. R., Haley M. M. Organome-tallics, 2004, 23: 1174.

[4]

Wang T., Zhang H., Han F., Lin R., Lin Z., Xia H. Angew. Chem. Int. Ed., 2012, 51: 9838.

[5]

Liu B., Zhao Q., Wang H., Chen J., Cao X., Cao Z., Xia H. Chinese J. Chem., 2012, 30: 2158.

[6]

Clark G. R., Johns P. M., Roper W. R., Söhnel T., Wright L. J. Or-ganometallics, 2011, 30: 129.

[7]

Fan J., Wang X., Zhu J. Organometallics, 2014, 33: 2336.

[8]

Wei J., Zhang Y., Chi Y., Liu L., Zhang W., Xi Z. J. Am. Chem. Soc., 2016, 138: 60.

[9]

Schleyer P. V. R., Wu J. I., Cossio F. P., Fernández I. Chem. Soc. Rev., 2014, 43: 4909.

[10]

Fernández I., Frenking G., Merino G. Chem. Soc. Rev., 2015, 44: 6452.

[11]

Lu X., Li Y., Bao W., Liu D. Chinese J. Chem. Phys., 2013, 26(1): 43.

[12]

Lu X., Wang D., Ming J. Chinese J. Chem. Phys., 2016, 29(2): 193.

[13]

Wei R. B., Liang Y. Chem. J. Chinese Universities, 2008, 29(2): 309.

[14]

Liang Y., Guo J. J., Wei R. B. Chem. J. Chinese Universities, 2007, 28(9): 1681.

[15]

Liang Y., Guo J., Liu X., Wei R. Chem. Res. Chinese Universities, 2008, 24(4): 441.

[16]

Rios R. Chem. Soc. Rev., 2012, 41: 1060.

[17]

Zhang Y., Wei J., Chi Y., Zhang X., Zhang W., Xi Z. J. Am. Chem. Soc., 2017, 139: 5039.

[18]

Becke A. D. Phys. Rev. A, 1988, 38: 3098.

[19]

Lee C., Yang W., Parr R. G. Phys. Rev. B, 1988, 37: 785.

[20]

Perdew J. P. Phys. Rev. B, 1986, 33: 8822.

[21]

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.

[22]

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1997, 78: 1396.

[23]

Feller D. J. Comp. Chem., 1996, 17: 1571.

[24]

Schuchardt K. L., Didier B. T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T. L. J. Chem. Inf. Model., 2007, 47: 1045.

[25]

Kleinpeter E., Klod S., Koch A. J. Mol. Struc.-Theochem., 2007, 811: 45.

[26]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr, Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jara-millo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dap-prich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cios-lowski J., Fox D. J. Gaussian 09, Revision A.1, 2009, Wal-lingford CT: Gaussian Inc..

[27]

Lu T., Chen F. J. Comp. Chem., 2012, 33: 580.

[28]

Liu N. N., Ding Y. H. Chinese J. Chem. Phys., 2015, 28(6): 703.

[29]

Liu N. N., Gao S. M., Ding Y. H. Dalton Trans., 2015, 44: 345.

[30]

Liu N. N., Ding Y. H. New J. Chem., 2015, 39: 1558.

[31]

Liu N. N., Yu S., Ding Y. H. Chem. J. Chinese Universities, 2016, 37(11): 2006.

[32]

Liu N., Wang J. Int. J. Quantum. Chem., 2018, 118(8): e25524.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/