Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel

Weiwei Zhang , Huijing Li , Yanchao Wu , Qi Luo , Huanhuan Liu , Lin Niu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 817 -822.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 817 -822. DOI: 10.1007/s40242-018-7349-1
Article

Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel

Author information +
History +
PDF

Abstract

The correlation between inhibition efficiency and molecular structures of the inhibitor during hydrochloric acid corrosion of Q235 steel was studied by quantum chemical calculations and molecular dynamics(MD) simulation. The proton affinity(PA) calculations demonstrated that 2-(quinolin-2-yl)quinazolin-4(3H)-one inhibitor has the tendency to be protonated in hydrochloric acid, which was in good agreement with experimental observations. Besides, quantum chemical parameters revealed that the protonated corrosion inhibitor molecules were more easily adsorbed on Q235 steel surface and improved the corrosion resistance of steel. MD simulations were implemented to search for the adsorption behavior of this molecule on Fe (110) surface, which might be used as a convenient tool for estimating the interaction mechanism between inhibitor and iron surface.

Keywords

Q235 steel / Corrosion inhibition / Density function theory / Molecular dynamic simulation

Cite this article

Download citation ▾
Weiwei Zhang, Huijing Li, Yanchao Wu, Qi Luo, Huanhuan Liu, Lin Niu. Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel. Chemical Research in Chinese Universities, 2018, 34(5): 817-822 DOI:10.1007/s40242-018-7349-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang S., Tao Z., Li W., Hou B. Appl. Surf. Sci., 2009, 255: 6757.

[2]

Ayati N. S., Khandandel S., Momeni M., Moayed M. H., Davoodi A., Rahimizadeh M. Mater. Chem. Phys., 2001, 126: 873.

[3]

Askalany A. H., Mostafa S. I., Shalabi K., Eid A. M., Shaaban S. J. Mol. Liq., 2016, 223: 497.

[4]

Zhang W. W., Ma R., Li S., Liu Y., Niu L. Chem. Res. Chinese Universities, 2016, 32(5): 827.

[5]

Mistry B. M., Patel N. S., Sahoo S., Jauhari S. Bull. Mater. Sci., 2012, 35: 459.

[6]

Olasunkanmi L. O., Obot I. B., Kabanda M. M. J. Phys. Chem. C, 2015, 119: 16004.

[7]

Saha S. K., Ghosh P., Hens A., Murmu N. C. Physica E., 2015, 66: 332.

[8]

Kokalj A. Electrochim. Acta, 2010, 56: 745.

[9]

Zhang J., Zhao W. M., Guo W. Y., Wang Y., Li Z. P. Acta Phys. Chim. Sin., 2008, 24: 1239.

[10]

Zhang W. W., Ma R., Liu H. H., Liu Y., Li S., Niu L. J. Mol. Liq., 2016, 222: 671.

[11]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Pe-tersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Ku-din K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salva-dor P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, 2013, Wallingford CT: Gaussian Inc..

[12]

Xiao L., Chu W., Sun W. J., Xue Y. Chem. Res. Chinese Universi-ties, 2017, 33(3): 422.

[13]

Liu N. N., Yu S., Ding Y. H. Chem. J. Chinese Universities, 2016, 37(11): 2006.

[14]

Zeng J. P., Zhang J. Y., Gong G. X. Comput. Theor. Chem., 2011, 963: 110.

[15]

RameshKumar S., Danaee I. R., Avei M., Vijayan M. J. Mol. Liq., 2015, 212: 168.

[16]

Danaee I., Gholami M. R., Avei M., Maddahy M. H. J. Ind. Eng. Chem., 2015, 26: 81.

[17]

Makowski M., Raczyńska E. D., Chmurzyński L. J. Phys. Chem. A, 2001, 105: 869.

[18]

Raczyńska E. D., Darowska M., Dabkowska I., Decouzon M., Gal J. F., Maria P. C., Poliart C. D. J. Org. Chem., 2004, 69: 4023.

[19]

Raczyńska E. D., Makowski M., Gornicka E., Darowska M. Int. J. Mol. Sci., 2005, 6: 143.

[20]

Brigas A. F., Clegg W., Dillon C. J. J. Chem. Soc., Perkin Trans., 2001, 2: 1315.

[21]

Gece G. Corros. Sci., 2008, 50: 2981.

[22]

Wang J. K., Han L., Huang L., Zhang H. J., Li J. Y., Li S. S. Chem. J. Chinese Universities, 2017, 38(9): 1602.

[23]

Cruz J. G., Ochoa E., Castrob M. J. Electrochem. Soc., 2003, 150: 26.

[24]

Aljourani J., Raeissi K., Golozar M. A. Corros. Sci., 2009, 51: 1836.

[25]

Yüce A. O., Mert B. D., Kardas G., Yazici B. Corros. Sci., 2014, 83: 310.

[26]

Mahdavian M., Ashhari S. Electrochim. Acta, 2010, 55: 1720.

[27]

Lukovits I., Kálmán E., Zucchi F. Corrosion, 2001, 57: 3.

[28]

Parr R. G., Yang W. J. Am. Chem. Soc., 1984, 106: 4049.

[29]

Fazal E. Y., Panicker C., Nagarajan S., Sudha B. S., Srivastava S. K., Harikumar B., Anto P. L. Spectrochim. Acta A, 2015, 145: 260.

[30]

Soltani N., Behpour M., Oguzie E. E., Mahluji M., Ghasemzadeh M. A. RSC Adv., 2015, 5: 11145.

[31]

Casewit C., Colwell K., Rappe A. J. Am. Chem. Soc., 1992, 114: 10046.

[32]

Arab S. T. Mater. Res. Bull., 2008, 43: 510.

[33]

Popova A., Christov M., Deligeorigiev T. Corrosion, 2003, 59: 756.

[34]

Saha K. S., Hens A., Roy Chowdhury A., Lohar K. A., Murmu N. C. Canad. Chem. Trans., 2014, 2: 489.

[35]

Cao Z., Tang Y., Cang H., Xu J., Lu G., Jing W. Corros. Sci., 2014, 83: 292.

[36]

Allen M. P., Tildesley D. J. Computer Simulation of Liquids, 1987, Oxford: Clarendon Press.

[37]

Shi W. Y., Ding C., Yan J. L. Desalination, 2012, 291: 8.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/