First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode

Wei Dong , Ding Shen , Shaobin Yang , Bing Liang , Xuelei Wang , Yue Liu , Sinan Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 235 -240.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 235 -240. DOI: 10.1007/s40242-018-7340-x
Article

First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode

Author information +
History +
PDF

Abstract

The equilibrium structures, formation energy, mechanical properties and electronic properties of Co-Sn intermetallics have been systemically studied by first-principles study. The results show that the CoSn phase is more thermodynamically stable than any other stoichiometry of Co-Sn intermetallics. With the increasing of Co content in Co-Sn intermetallics, the mechanical properties change into brittle behavior from ductility character. Adding proper amount of Co to Co-Sn intermetallics can improve the cycle performance for lithium ion battery anode. However, high Co content will lead to a poor cycle performance for Co-Sn intermetallics.

Keywords

Co-Sn intermetallic / Mechanical property / Electronic property / First-principle / Lithium ion battery

Cite this article

Download citation ▾
Wei Dong, Ding Shen, Shaobin Yang, Bing Liang, Xuelei Wang, Yue Liu, Sinan Li. First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode. Chemical Research in Chinese Universities, 2018, 34(2): 235-240 DOI:10.1007/s40242-018-7340-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang A. N., Fan X., Zhu J., Ma D. Q., Xu X. H. Ionics, 2015, 21(8): 2137.

[2]

Meng H. W., Yang H. Y., Yu X. H., Dou P., Ma D. Q., Xu X. H. RSC Advances, 2015, 5(116): 95488.

[3]

Pang X. J., Tan C. H., Dai X. H., Wang X., Qi G. W., Zhang S. Y. J. Appl. Electrochem., 2015, 45(2): 115.

[4]

Li J. T., Swiatowska J., Seyeux A., Huang L., Maurice V., Sun S. G., Marcus P. J. Power Sources, 2010, 195(24): 8251.

[5]

Xiao S., Song H., Li A., Chen X. H., Zhou J. S., Ma Z. K. J. Mater. Chem. A, 2017, 5(12): 5873.

[6]

Yui Y., Ono Y., Hayashi M., Nemoto Y., Hayashi K., Asakura K., Kitabayashi H. J. Electrochem. Soc., 2015, 162(2): A3098.

[7]

Yui Y. H., Hayashi M., Hayashi K., Nakamura J. Solid State Ionics, 2016, 288: 219.

[8]

Zhang F., Wang J. C., Liu S. H., Du Y. J. Power Sources, 2016, 330: 111.

[9]

Sosa-Hernández E. M., Montejano-Carrizales J. M., Alvarado-Leyva P. G. J. Alloys Compounds, 2015, 632: 772.

[10]

Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I., Refson K., Payne M. C. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567.

[11]

Vanderbilt D. Phys. Rev. B, 1990, 41(11): 7892.

[12]

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1996, 77(18): 3865.

[13]

Monkhorst H. J., Pack J. D. Phys. Rev. B, 1976, 13(12): 5188.

[14]

Colinet C., Tedenac J. C., Fries S. G. Calphad, 2009, 33(1): 250.

[15]

Chen J., Lai Y. S. Microelectronics Reliability, 2009, 49(3): 264.

[16]

Voigt W. Annalen der Physik, 1889, 274(12): 573.

[17]

Reuss A. Z. Angew. Math. Mech., 1929, 9: 49.

[18]

Hill R. Proc. Phys. Soc.: Section A, 1952, 65(5): 349.

[19]

Simmons G., Wang H. B. Single Crystal Elastic Constants & Cal-culated Aggregate Properties, 1971, 34.

[20]

Ishida K., Nishizawa T. J. Phase Equilibria, 1991, 12(1): 88.

[21]

Wang X. L., Chen H., Bai J., Han W. Q. J. Phys. Chem. Lett., 2012, 3(11): 1488.

[22]

Liu M., Liu L. G. High Temperatures-High Pressures, 1986, 18: 79.

[23]

Mortazavi M., Deng J. K., Shenoy V. B., Medhekar N. V. J. Power Sources, 2013, 225: 207.

[24]

Sun W. M., Zhang L., Liu J., Wang H., Bu Y. X. Computational Ma-terials Science, 2016, 111: 175.

[25]

Havinga E. E. J. Less Common Metals, 1972, 27(2): 187.

[26]

Larsson A. K., Haeberlein M., Lidin S., Schwarz U. J. Alloy. Comp., 1996, 240(1/2): 79.

[27]

Owen E. A., Madoc J. D. Proc. Phys. Soc. B, 1954, 67(6): 456.

[28]

Max B., Kun H. Dynamical Theory of Crystal Lattices, 1956, Oxford: Clarendon, 132.

[29]

Wang X. L., Feygenson M., Chen H., Lin C. H., Ku W., Bai J., Han W. Q. J. Am. Chem. Soc., 2011, 133(29): 1121.

[30]

Li L. H., Wang W. L., Wei B. Comput. Mater. Sci., 2015, 99: 274.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/