Experimental Investigation and Thermodynamic Modeling of the NaCl-NaNO3-Na2SO4 Ternary System

Xiang Li , Zejie Fei , Yang Wang , Leidong Xie

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 475 -479.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 475 -479. DOI: 10.1007/s40242-018-7339-3
Article

Experimental Investigation and Thermodynamic Modeling of the NaCl-NaNO3-Na2SO4 Ternary System

Author information +
History +
PDF

Abstract

Molten salts as heat transfer and storage materials have been used to nuclear energy and concentrated solar power(CSP) applications. In this work, the system of molten salt mixture based on thermodynamic principles was designed as thermal energy storage(TES) materials. The substitutional solution model can be employed to describe the Gibbs energies of all liquid phase. Thermodynamic model parameters for the NaCl-NaNO3-Na2SO4 subsystems were conducted by thermodynamic evaluation and optimization based on experimental phase-equilibria data. Thus, a set of self-consistent thermodynamic database was eventually obtained to reliably calculate the whole phase diagram and thermodynamic properties for the NaCl-NaNO3-Na2SO4 ternary system. The results manifest that the eutectic point of theternary system located at T=280 °C and x NaCl=8.4%, ${x_{NaN{O_3}}}$=86.3% and ${x_{N{a_2}S{O_4}}}$=5.3%. Moreover, the results predicted were verified experimentally using differential scanning calorimetry(DSC) and the agreement between the measured value[T=(287±2) °C] and predicted value(T=280 °C) was satisfactory. Thus, the thermodynamic calculation method will be used to design and develop novel molten salt mixture as thermal energy storage materials.

Keywords

Thermodynamics modeling / Molten salt / Thermal energy storage / Phase diagram

Cite this article

Download citation ▾
Xiang Li, Zejie Fei, Yang Wang, Leidong Xie. Experimental Investigation and Thermodynamic Modeling of the NaCl-NaNO3-Na2SO4 Ternary System. Chemical Research in Chinese Universities, 2018, 34(3): 475-479 DOI:10.1007/s40242-018-7339-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aneke M., Wang M. H. Appl. Energ., 2016, 179: 350.

[2]

Alva G., Liu L. K., Huang X., Fang G. Y. Renew. Sustain. Energy Rev., 2017, 68: 693.

[3]

Myers P. D., Goswami D. Y. Appl. Therm. Eng., 2016, 109: 889.

[4]

Raade J. W., Padowitz D. J. Sol. Energy Eng., 2011, 133(3): 031013.

[5]

Fernandez A. G., Ushak S., Galleguillos H., Perez F. J. Solar Energ. Mater. Solar Cells, 2015, 132: 172.

[6]

Mantha D., Wang T., Reddy R. G. Solar Energ. Mater. Solar Cells, 2013, 118: 18.

[7]

Wang T., Mantha D., Reddy R. G. Appl. Energ., 2013, 102: 1422.

[8]

Wang T., Mantha D., Reddy R. G. Solar Energ. Mater. Solar Cells, 2015, 140: 366.

[9]

Xie M. Y., Li X., Ding Y. P., Zhang G. X. Chem. Res. Chinese Universities, 2017, 33(5): 794.

[10]

Li X., Wang K., Xie M. Y., Wu Z., Xie L. D. Chem. Res. Chinese Universities, 2017, 33(3): 454.

[11]

Barin I., Knacke O., Kubaschewski O. Thermochemical Properties of Inorganic Substances, 1977

[12]

Dessureault Y., Sangster J., Pelton A. D. J. Phys. Chem. Ref. Data, 1990, 19: 1149.

[13]

Robelin C., Chartrand P., Pelton A. D. J. Chem. Thermodyn., 2015, 83: 12.

[14]

Margules M. Sitzungsber. Akad. Wiss. Wien., 1895, 104: 1243.

[15]

Borelius G. Ann. Phys-Berlin, 1934, 20: 57.

[16]

Redlich O., Kister A. T. J. Ind. Eng. Chem., 1948, 40: 345.

[17]

Bale C. W., Pelton A. D. Metall. Trans., 1974, 5: 2323.

[18]

Perman E. P. J. Chem. Soc., 1922, 121: 2473.

[19]

Luzhnaya N. P. Tr. Gos. Inst. Prikl. Khim., 1935, 23: 34.

[20]

Blidin V. P. Izv. Sekt. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR, 1940, 13: 291.

[21]

Nyankovskaya R. N. Akad. Nauk SSSR, 1952, 21: 259.

[22]

Ko H. C., Hu T., Spencer J. G., Huang C. Y., Helper L. G. J. Chem. Eng. Data, 1963, 8: 364.

[23]

Janecke E. Z. Phys. Chem., 1909, 64: 343.

[24]

Wolters A. Neues Jahrb. Min. Geol.(Beil. Bd.), 1911, 30: 55.

[25]

Sackur O. Z. Phys. Chem., 1912, 78: 550.

[26]

Klochko M. A. Zh. Obshch. Khim, 1933, 3: 1026.

[27]

Mukimov S. Ann. Secteur Anal. Phys.-Chim., Inst. Chim. Gen. (USSR), 1940, 12: 19.

[28]

Flood H., Forland T., Nesland A. Acta Chem. Scand., 1951, 5: 1193.

[29]

Nagornyi G. I., Zimina T. D. Izvest. Fiz.-Khim. Nauch.-Issledovatel. Inst. Irkutsk. Univ., 1953, 2: 31.

[30]

Akopov E. K., Bergman A. G. Zh. Obshch. Khim., 1954, 24: 1524.

[31]

Bergman A. G., Sementsova A. K. Zh. Neorg. Khim., 1958, 3: 383.

[32]

Amadori M. Atti della Accad. Nazion. dei Lincei, Classe di Sc. Fis. Matemat. Nat. Rend., 1914, 22: 332.

[33]

Bergman A. G., Vaksberg N. M. Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk., 1937.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/