Electronic and Spectroscopic Properties of La2@C112 Isomers

Mingqian Wang , Boning Wang , Weiqi Li , Xin Zhou , Li Yang , Weiquan Tian

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 241 -246.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 241 -246. DOI: 10.1007/s40242-018-7330-z
Article

Electronic and Spectroscopic Properties of La2@C112 Isomers

Author information +
History +
PDF

Abstract

Among the 3352 isolated pentagon rule(IPR) isomers and 129073 non-IPR isomers satisfying adjacent pentagon pairs(APPs)≤2 of fullerene C112, the lowest-energy IPR and non-IPR isomers of C112 and C112 6- have been fully screened by the density functional tight-binding(DFTB) and density functional theory(DFT) methods for studying the electronic and spectroscopic properties of La2@C112. The structural features and infrared and absorption spectra of those isomers were analyzed in detail, and the characteristic fingerprint absorption peaks were assigned. To clarify the relative stabilities of La2@C112 isomers at high temperature, entropy contributions were determined at the B3LYP level. IPR isomer La2@C112(C 2:860136) is not the lowest-energy isomer but is one of the most important isomers. This is the first work that considers non-IPR C112 isomers when exploring the structure and properties of La2@C112.

Keywords

C112 fullerene / La-endohedral metallofullerene(La-EMF) / Thermostability / IR spectrum / UV-Vis spectrum

Cite this article

Download citation ▾
Mingqian Wang, Boning Wang, Weiqi Li, Xin Zhou, Li Yang, Weiquan Tian. Electronic and Spectroscopic Properties of La2@C112 Isomers. Chemical Research in Chinese Universities, 2018, 34(2): 241-246 DOI:10.1007/s40242-018-7330-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kroto H. W., Heath J. R., Curl R. F., Smalley R. E. Nature, 1985, 318: 162.

[2]

Krätschmer W., Lamb L. D., Fostiropoulos K., Huffman D. R. Na-ture, 1990, 347: 354.

[3]

Kadish K. M., Ruoff R. Fullerenes: Chemistry, Physics, and Technology, 2000, New York: Wiley-VCH.

[4]

Schön J. H., Kloc Ch., Siegrist T., Steigerwald M., Svensson C., Batlogg B. Nature, 2011, 413: 831.

[5]

Peet J., Soci C., Coffin R. C., Nguyen T. Q., Mikhailovsky A., Moses D., Bazan G. C. Appl. Phys. Lett., 2006, 89: 252105.

[6]

Amer M. S., Busbee J. J. Phys. Chem. C, 2011, 115: 10483.

[7]

Vakhrushev A. V., Suyetin M. V. Nanotechnology, 2009, 20: 125602.

[8]

Tian W. Q., Chen D. L., Cui Y. H., Feng J. K. J. Comput. Theor. Nanosci., 2009, 6: 239.

[9]

Zhou X., Li W. Q., Shao B., Tian W. Q. J. Phys. Chem. C, 2013, 117: 23172.

[10]

Lu X., Feng L., Akasaka T., Nagase S. Chem. Soc. Rev., 2013, 41: 7723.

[11]

Zhang X., Li X. D., Ma L. X. Chem. Res. Chinese Universities, 2014, 30(6): 1044.

[12]

Tamm N. B., Sidorov L. N., Kemnitz E., Troyanov S. Angew. Chem. Int. Ed., 2009, 48: 9102.

[13]

Yang S. F., Wei T., Kemnitz E., Troyanov S. I. Angew. Chem. Int. Ed., 2012, 51: 8239.

[14]

Yang H., Jin H. X., Che Y. L., Hong B., Liu Z. Y., Gharamaleki J. A., Olmstead M. M., Balch A. L. Chem. Eur. J.: Chemistry., 2012, 18: 2792.

[15]

Mercado B. Q., Jiang A., Yang H., Wang Z. M., Jin H. X., Liu Z. Y., Olmstead M. M., Balch A. L. Angew. Chem. Int. Ed., 2009, 48: 9114.

[16]

Ravinder P., Subramanian V. Comput. Thero. Chem., 2012, 998: 106.

[17]

Shao N., Gao Y., Zeng X. C. J. Phys. Chem. C, 2007, 111: 17671.

[18]

Xu L., Cai W. S., Shao X. G. Comput. Mat. Sci., 2008, 41: 522.

[19]

Xu L., Cai W. S., Shao X. G. J. Phys. Chem. A, 2006, 110: 9247.

[20]

Zhao X., Slanina Z. Comput. Thero. Chem., 2003, 636: 195.

[21]

Zhao X., Goto H., Slanina Z. Chem. Phys., 2004, 306: 93.

[22]

Calaminici P., Geudtner G., Köster A. M. J. Chem. Theory. Comput., 2009, 5: 29.

[23]

Popov A. A., Dunsch L. J. Am. Chem. Soc., 2007, 129: 11835.

[24]

Yang T., Zhao X., Nagase S. Phys. Chem. Chem. Phys., 2001, 13: 5034.

[25]

Guo Y. J., Yang T., Nagase S., Zhao X. Inorg. Chem., 2014, 53: 2012.

[26]

Zhao X., Gao W. Y., Yang T., Zheng J. J., Li L. S., He L., Cao R. J., Nagase S. Inorg. Chem., 2012, 51: 2039.

[27]

Lu X., Akasaka T., Nagase S. Rare Earth Coordination Chemistry: Fundamentals and Applications, 2009, Singapore: Wiley-Blackwell, 273.

[28]

Brinkmann G., Friedrichs O. D., Lisken S., Peeters A., van Cleemput N. Match-Commun. Math. Comput. Chem., 2010, 63: 533.

[29]

Porezag D., Frauenheim Th., Köhler Th., Seifert G., Kaschner R. Phys. Rev. B: Condens. Matter., 1995, 51: 12947.

[30]

Bai H. C., Xue P., Tao J. Y., Ji W. X., Han Z. M., Ma Y. J., Ji Y. Q. Comput. Thero, Chem., 2015, 1069: 138.

[31]

Casida M. E., Jamorski C., Casida K. C., Salahub D. R. J. Chem. Phys., 1998, 108: 4439.

[32]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 03, Revision E.01, 2003, Pittsburgh PA: Gaussian Inc..

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/