Fabrication and Properties of Graphene Oxide/Sulfonated Polyethersulfone Layer-by-layer Assembled Polyester Fiber Composite Proton Exchange Membranes

Lihua Huang , Yao He , Liying Jin , Xiuwei Hou , Luyang Miao , Changli Lü

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 318 -325.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 318 -325. DOI: 10.1007/s40242-018-7313-0
Article

Fabrication and Properties of Graphene Oxide/Sulfonated Polyethersulfone Layer-by-layer Assembled Polyester Fiber Composite Proton Exchange Membranes

Author information +
History +
PDF

Abstract

Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester fiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the axis of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.

Keywords

Composite proton exchange membrane / Graphene oxide / Sulfonated polyethersulfone / Polyester fiber / Layer-by-layer assembly / Property

Cite this article

Download citation ▾
Lihua Huang, Yao He, Liying Jin, Xiuwei Hou, Luyang Miao, Changli Lü. Fabrication and Properties of Graphene Oxide/Sulfonated Polyethersulfone Layer-by-layer Assembled Polyester Fiber Composite Proton Exchange Membranes. Chemical Research in Chinese Universities, 2018, 34(2): 318-325 DOI:10.1007/s40242-018-7313-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thenmozhi S., Dharmaraj N., Kadirvelu K., Kim H. Y. Mater. Sci. Eng. B, 2017, 217: 36.

[2]

Nie G. D., Li S. K., Lu X. F., Wang C. Chem. J. Chinese Universities, 2013, 34(1): 15.

[3]

Greiner A., Wendorff J. H. Angew. Chem. Int. Ed., 2007, 46: 5670.

[4]

Wang X., Hsiao B. S. Curr. Opin. Chem. Eng., 2016, 12: 62.

[5]

Ding Y., Hou H., Zhao Y., Zhu Z., Fong H. Prog. Polym. Sci., 2016, 61: 67.

[6]

Choi J., Wycisk R., Zhang W., Pintauro P. N., Lee K. M., Mather P. T. ChemSusChem, 2010, 3: 1245.

[7]

Santos L. D., Rose S., Sel O., Maréchal M., Perrot H., Laberty-Robert C. J. Membr. Sci., 2016, 513: 12.

[8]

Choi J., Lee K. M., Wycisk R., Pintauro P. N., Mather P. T. J. Elec-trochem. Soc., 2010, 157: B914.

[9]

Dong B., Gwee L., de la Salas- Cruz D., Winey K. I. Elabd Y. A. Nano Lett., 2010, 10: 3785.

[10]

Yao Y. F., Ji L. W., Lin Z., Li Y., Alcoutlabi M., Hamouda H., Zhang X. W. ACS Appl. Mater. Interfaces, 2011, 3: 3732.

[11]

Yao F. Y., Guo B. K., Ji L. W., Jung K. H., Lin Z., Alcoutlabi M., Hamouda H., Zhang X. W. Electrochem. Commun., 2011, 13: 1005.

[12]

Mollá S., Compañ V. J. Membr. Sci., 2011, 372: 191.

[13]

Shabani I., Hasani-Sadrabadi M. M., Haddadi-Asl V., Soleimani M. J. Membr. Sci., 2011, 368: 233.

[14]

Lin H. L., Wang S H., Chiu C. K., T Y. L., Chen L. C., Huang C. C., Cheng T. H., Lin J. M. J. Membr. Sci., 2010, 365: 114.

[15]

Wang S. H., Lin H. L. J. Power Sources, 2014, 257: 254.

[16]

Chen P., Wu H. J., Yuan T., Zou Z. Q., Zhang H. F., Zheng J. W., Yang H. J. Power Sources, 2014, 255: 70.

[17]

Choi J., Lee K. M., Wycisk R., Pintauro P. N., Mather P. T. Macro-molecules, 2008, 41: 4569.

[18]

Tamura T., Kawakami H. Nano Lett., 2010, 10: 1324.

[19]

Tanaka M., Takeda Y., Wakiya T., Wakamoto Y., Harigaya K., Ito T., Tarao T., Kawakami H. J. Power Sources, 2017, 342: 125.

[20]

Zhang S., He G., Gong X., Zhu X., Wu X., Sun X., Zhao X., Li H. J. Membr. Sci., 2015, 493: 58.

[21]

Bakangura E., Wu L., Ge L., Yang Z., Xu T. Prog. Polym. Sci., 2016, 57: 103.

[22]

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science, 2004, 306: 666.

[23]

Allen M. J., Tung V. C., Kaner R. B. Chem. Rev., 2010, 110: 132.

[24]

Pandey R. P., Shukla G., Manohar M., Shahi V. K. Adv. Colloid In-terface Sci., 2017, 240: 15.

[25]

Choi B. G., Hong J., Park Y. C., Jung D. H., Hong W. H., Hammond P. T., Park H. ACS Nano, 2011, 5: 5167.

[26]

Zarrin H., Higgins D., Jun Y., Chen Z., Fowler M. J. Phys. Chem. C, 2011, 115: 20774.

[27]

Mishra A. K., Kim N. H., Jung D., Lee J. H. J. Membr. Sci., 2014, 458: 128.

[28]

Gao W., Wu G., Janicke M. T., Cullen D. A., Mukundan R., Baldwin J. K., Brosha E. L., Galande C., Ajayan P. M., More K. L., Dattel-baum A. M., Zelenay P. Angew. Chem. Int. Ed., 2014, 53: 3588.

[29]

Jia W., Tang B., Wu P. ACS Appl. Mater. Interfaces, 2016, 8: 28955.

[30]

He G., Chang C., Xu M., Hu S., Li L., Zhao J., Li Z., Li Z., Yin Y., Gang M., Wu H., Yang X., Guiver M. D., Jiang Z. Adv. Funct. Mater., 2015, 25: 7502.

[31]

He Y., Tong C., Geng L., Liu L., C. J. Membr. Sci., 2014, 458: 36.

[32]

Zhao L., Li Y., Zhang H., Wu W., Liu J., Wang J. J. Power Sources, 2015, 286: 445.

[33]

Zhao Y., Fu Y., He Y., Hu B., Liu L., J., C. RSC Adv., 2015, 5: 93480.

[34]

Hasani-Sadrabadi M. M., Dashtimoghadam E., Ghaffarian S. R., Sadrabadi M. H. H., Heidari M., Moaddel H. Renew. Energ., 2010, 35: 226.

[35]

Hummers W. S., Offeman R. E. J. Am. Chem. Soc., 1958, 80: 1339.

[36]

Lin Y., Jin J., Song M. J. Mater. Chem., 2011, 21: 3455.

[37]

Park S. J., Lee K. S., Bozoklu G., Cai W., Nguyen S. T., Ruoff R. S. ACS Nano, 2008, 2: 572.

[38]

Kundu A., Nandi S., Das P., Nandi A. K. ACS Appl. Mater. Interfaces, 2015, 7: 3512.

[39]

Jiang K., Ye C., Zhang P., Wang X., Zhao Y. Macromolecules, 2012, 45: 1346.

[40]

Chien H. C., Tsai L. D., Huang C. P., Kang C. Y., Lin J. N., Chang F. C. Int. J. Hydrogen Energ., 2013, 38: 13792.

[41]

Liu Y. H., Wang J. T., Zhang H. Q., Ma C. M., Liu J. D., Cao S. K., Zhang X. J. Power Sources, 2014, 269: 898.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/