Synthesis of Camptothecin-10-O-glucoside Using an Engineered Oleandomycin Glucosyltransferase

Xuelin Zhu , Qinmei Ye , Chao Wen , Liping Chen , Guangping Liang , Ting Zeng , Dongmei Zhang , Renwang Jiang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 423 -427.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 423 -427. DOI: 10.1007/s40242-018-7309-9
Article

Synthesis of Camptothecin-10-O-glucoside Using an Engineered Oleandomycin Glucosyltransferase

Author information +
History +
PDF

Abstract

Oleandomycin glycosyltransferase variant P67T/S132F/A242V(ASP) was used to convert 10-hydroxy-camptothecin into camptothecin-10-O-glucoside, which was confirmed by spectral analysis. Compared to the pre-viously reported results, the present study reached the conversion rate up to 80% through the optimization of reaction conditions. In addition, compared with 10-hydroxycamptothecin(HCPT), camptothecin-10-O-glucoside inhibited the proliferation of Huh7 cells in a concentration-dependent manner and showed stronger antineoplastic effect but lower toxicity. Furthermore, camptothecin-10-O-glucoside induced more apoptotic cells as compared with the parent compound.

Keywords

Camptothecin-10-O-glucoside / 10-Hydroxycamptothecin / Glycosylation / Glucosyltransferase / Antineoplastic

Cite this article

Download citation ▾
Xuelin Zhu, Qinmei Ye, Chao Wen, Liping Chen, Guangping Liang, Ting Zeng, Dongmei Zhang, Renwang Jiang. Synthesis of Camptothecin-10-O-glucoside Using an Engineered Oleandomycin Glucosyltransferase. Chemical Research in Chinese Universities, 2018, 34(3): 423-427 DOI:10.1007/s40242-018-7309-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiyama R., Nagai H., Nokata K., Shinohara C., Sawada S. Phytochemistry, 1988, 27(2): 3663.

[2]

Li D. Z., Zhang Q. Z., Wang C. Y., Zhang Y. L., Li X. Y., Huang J. T., Liu H. Y., Fu Z. D., Song H. X., Lin J. P., Ji T. F., Pan X. D. Eur. J. Med. Chem., 2017, 125(6): 1235.

[3]

Wang S., You Y., You Q. D. Chinese Chem. Lett., 2008, 19(8): 918.

[4]

Hu W., Zhang C., Fang Y., Lou C. Toxicology In vitro, 2011, 25(9): 513.

[5]

Guo Q., Yuan Q. Y. Nat. Prod. Res., 2016, 30(9): 1053.

[6]

Ahmed A., Peters N. R., Fitzgerald M. K., Watson J. A., Hoffmann F. M., Thorson J. S. J. Am. Chem. Soc., 2006, 128(12): 14224.

[7]

Wilson A. C. Nat. Prod. Rep., 1997, 14(5): 99.

[8]

Thorson J. S., Hosted J., Jiang J., Biggins J. B. Ahlert J., Curr. Org. Chem., 2001, 5(10): 139.

[9]

Tan Y., Xiao X., Yao J., Han F., Lou H., Luo H. Chem. Res. Chinese Universities, 2017, 33(5): 80.

[10]

Quirós L. M., Carbajo R. J., Braña A. F., Salas J. A. J. Biological Chem., 2000, 275(6): 11713.

[11]

Gantt R. W., Peltier-Pain P., Thorson J. S. Nat. Prod. Rep., 2011, 28(8): 1811.

[12]

Williams G. J., Zhang C., Thorson J. S. Nat. Chem. Biol., 2007, 3(14): 657.

[13]

Zhou M., Thorson J. S. Org. Lett., 2011, 13(3): 2786.

[14]

Zhou M., Hamza A., Zhan C. G., Thorson J. S. J. Nat. Prod., 2013, 76(16): 279.

[15]

Williams G. J., Thorson J. S. Nat. Protoc., 2008, 3(2): 357.

[16]

Gantt R. W., Goff R. D., Williams G. J., Thorson J. S. Angew. Chem. Int. Ed., 2008, 47(7): 8889.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/