Metabonomics and Molecular Biology-based Effects of Sugemule-3 in an Isoproterenol-induced Cardiovascular Disease Rat Model

Xiye Wang , Yu Wang , Chengxi Wei , Lijun Yu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 590 -597.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 590 -597. DOI: 10.1007/s40242-018-7307-y
Article

Metabonomics and Molecular Biology-based Effects of Sugemule-3 in an Isoproterenol-induced Cardiovascular Disease Rat Model

Author information +
History +
PDF

Abstract

Cardiovascular disease(CVD) is a common and serious disease in the elderly, which has characteristically high prevalence, disability, and mortality rates. However, the etiology of CVD is still not very clear. The traditional Mongolian medicine Sugemule-3(SM) is usually used for the treatment of CVD and exhibits a good curative effect. In this study, a serum metabolite profile analysis was used to identify potential biomarkers associated with isoproterenol(ISO)-induced CVD and investigate the mechanism of the action of SM. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the metabonomics analysis. Principal component analysis(PCA) was used to process the acquired data to differentiate the results of the control, CVD, and SM treatment groups. Orthogonal partial least squares discriminant analysis(OPLS-DA) enabled the identification of 21 metabolites as potential biomarkers that were relevant to phospholipid and energy metabolism. The results indicate that SM played a protective role against ISO-induced CVD in rats by regulating phospholipid and energy metabolic pathways. Further, we verified the apoptotic metabolic pathway using molecular biology methods, such as terminal deoxynucleotidyl transferase(TdT) deoxyuridine 5′-triphosphate(dUTP) nick-end labeling(TUNEL) assay and Western blot analysis. Furthermore, this study identified early biomarkers of CVD and elucidated the underlying mechanism of the therapeutic actions of SM, which is worth further to be investigated for development as a clinical therapy.

Keywords

Sugemule-3 / Metabonomics / Molecular biology / Ultra-performance liquid chromatography coupled with mass spectrometry(UPLC-MS) / Cardiovascular disease / Isoproterenol

Cite this article

Download citation ▾
Xiye Wang, Yu Wang, Chengxi Wei, Lijun Yu. Metabonomics and Molecular Biology-based Effects of Sugemule-3 in an Isoproterenol-induced Cardiovascular Disease Rat Model. Chemical Research in Chinese Universities, 2018, 34(4): 590-597 DOI:10.1007/s40242-018-7307-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Esposito K., Giugliano D. N. Engl. J. Med., 2013, 369: 674.

[2]

Perk J., de Backer G., Gohlke H. Turk. Kardiyol. Dern. Ars., 2012, 40: 1.

[3]

Mann D. L., Kent R. L., Parsons B., Cooper G. Circulation, 1992, 85: 790.

[4]

Bovo E., Lipsius S. L., Zima A. V. J. Physiol., 2012, 590: 3291.

[5]

Pollack M., Phaneuf S., Dirks A., Leeuwenburgh C., Ann N. Y. Acad. Sci., 2002, 959: 93.

[6]

Chang Y., Zhang P., Zhang X. Nat. Prod. Res., 2016, 12: 1.

[7]

Nimaradan U. Four Medical Tantras, 1983.

[8]

Wang Y., Gong G. H., Xu Y. N., Yu L. J., Wei C. X. Pharmacognosy Magazine, 2017, 51: 517.

[9]

Zhao Y. Y., Lei P., Chen D. Q., Feng Y. L., Bai X. J. Pharm. Biomed. Anal., 2013, 81: 202.

[10]

Wang X. Y., Shan X. T., Wang Y. L., Li D., Zhao M., Xu L. Chem. J. Chinese Universities, 2016, 37(5): 844.

[11]

Dai W., Wei C., Kong H., Jia Z., Han J., Zhang F., Wu Z., Gu Y., Chen S., Gu Q., Lu X., WuY X. G. J. Pharm. Biomed. Anal., 2011, 56: 86.

[12]

Zeng Q., Feng J. J., Lu T., Xu L. Y., Min C. Y., Xie H. P. Chem. Res. Chinese Universities, 2017, 33(1): 17.

[13]

Li P. H., Deng L. L., Luo J., Li W., Ning J., Ding J. H., Wu X. P. Chem. J. Chinese Universities, 2016, 37(4): 626.

[14]

Zhang R. X., Liu S., Pi Z. F., Song F. R., Liu Z. Q. Chem. J. Chinese Universities, 2014, 35(6): 1146.

[15]

Wang Y., Gong G. H., Zhou W., Zhang B., Bao S. Y., Wei C. X., Yue J. J., Zhang Y. F. Molecules, 2014, 19: 18090.

[16]

Deng W. K., Wang Y. B., Liu Z. X., Cheng H., Xue Y. PLoS One, 2014, 9: e111988.

[17]

Qi Y., Li S. Z., Pi Z. F., Song F. R., Lin N., Liu S. Y., Liu Z. Q. J. Chromatogr. B, 2014, 953: 11.

[18]

Astrid E. A., Stephan L. M., Martin C. M. Br. J. Pharmacol., 2004, 143: 666.

[19]

Hla T. Semin. Cell Dev. Biol., 2004, 15: 513.

[20]

Pyne S., Pyne N. J. Biochem. J., 2000, 349: 385.

[21]

Spiegel S., Kolesnick R. Leukemia, 2002, 16: 1596.

[22]

Olivier C., Grisha P., Burkhard K., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Nature, 1996, 381: 800.

[23]

Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. J. Biol. Chem., 1982, 257: 13341.

[24]

Vanna C., Manuela V., Sandro S. Eur. J. Biochem., 1994, 221: 1095.

[25]

Hsieh C. C., Yen M. H., Liu H. W., Lau Y. T. Atherosclerosi, 2000, 151: 481.

[26]

Rikke N., Tae-Hwan K., JØrgen F. Kidney Res. Clin. Pract., 2015, 34: 194.

[27]

Mederle K., Meurer M., Castrop H., Höcherl K. Am. J. Physiol. Renal Physiol., 2015, 309: 332.

[28]

Sklyarov A.Y., Panasyuk N. B., Fomenko I. S. J. Physiol. Pharma-col., 2011, 62: 65.

[29]

Chang J., Choi J., Rah Y. C., Too M. H., Oh K. H., Im G. J., Lee S. H., Kwon S. Y., Park H. C., Chae S. W., Jung H. H. PLoS One, 2016, 11: e0151557.

[30]

Green D. R., Reed J. C. Science, 1998, 281: 1309.

[31]

Adams J. M., Cory S. Science, 1998, 281: 1322.

[32]

Kang P. M., Izumo S. Circ. Res., 2000, 86: 1107.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/