Design and Synthesis of Proteolysis Targeting Chimeras for Inducing BRD4 Protein Degradation

Shihui Wang , Haiyan Li , Yue Wang , Yang Gao , Shanshan Yu , Qianqian Zhao , Xiangqun Jin , Haibin Lu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 221 -228.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 221 -228. DOI: 10.1007/s40242-018-7299-7
Article

Design and Synthesis of Proteolysis Targeting Chimeras for Inducing BRD4 Protein Degradation

Author information +
History +
PDF

Abstract

In this paper, we synthesized a series of proteolysis targeting chimeras(PROTACs) using VHL E3 ligase ligands for BRD4 protein degradation. One of the most promising compound 19g exhibited robust potency of BRD4 inhibition with IC50 value of (18.6±1.3) nmol/L, respectively. Furthermore, compound 19g potently inhibited cell proliferation in BRD4-sensitive cell lines RS4;11 with IC50 value of (34.2±4.3) nmol/L and capable of inducing de-gradation of BRD4 protein at 0.4—0.6 μmol/L in the RS4;11 leukemia cells. These data show that compound 19g is a highly potent and efficacious BRD4 degrader.

Keywords

Proteolysis targeting chimera(PROTAC) / BRD4 degrader / VHL ligand

Cite this article

Download citation ▾
Shihui Wang, Haiyan Li, Yue Wang, Yang Gao, Shanshan Yu, Qianqian Zhao, Xiangqun Jin, Haibin Lu. Design and Synthesis of Proteolysis Targeting Chimeras for Inducing BRD4 Protein Degradation. Chemical Research in Chinese Universities, 2018, 34(2): 221-228 DOI:10.1007/s40242-018-7299-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raina K., Crews C. M. Curr. Opin. Chem. Biol., 2017, 39: 46.

[2]

Lai A. C., Crews C. M. Nat. Rev. Drug Discovery, 2017, 16(2): 101.

[3]

Galdeano C., Gadd M. S., Soares P., Scaffidi S. v, Molle I., Birced I., Hewitt S., Dias D. M., Ciulli A. J. Med. Chem., 2014, 57(20): 8657.

[4]

Schneekloth A. R., Pucheault M., Tae H. S., Crews C. M. Bioorg. Med. Chem. Lett., 2008, 18(22): 5904.

[5]

Sakamoto K. M., Kim K. B., Kumagai A., Mercurio F., Crews C. M., Deshaies R. J. Proc. Natl. Acad. Sci. USA, 2001, 98(15): 8554.

[6]

Winter G. E., Buckley D. L., Paulk J., Roberts J. M., Souza A., Dhe-Paganon S., Bradner J. E. Science, 2015, 348(6241): 1376.

[7]

Lai A. C., Toure M., Hellerschmied D., Salami J., Jaime F. S., Ko E., Hines J. Angew. Chem., Int. Ed, 2016, 55(2): 807.

[8]

Okuhira K., Demizu Y., Hattori T., Ohoka N., Shibata N., Nishima-ki-Mogami T., Okuda H., Kurihara M., Naito M. Cancer Sci., 2013, 104(11): 1492.

[9]

Zengerle M., Chan K. H., Ciulli A. ACS Chem. Biol., 2015, 10(8): 1770.

[10]

Bondeson D. P., Mares A., Smith I. E., Ko E., Campos S., Miah A. H., Mulholland K. E., Routly N., Buckley D. L., Gustafson J. L., Zinn N., Grandi P., Shimamura S., Bergamini G., Faelth-Savitski M., Bant-scheff M., Cox C., Gordon D. A., Willard R. R., Flanagan J. J., Ca-sillas L. N., Votta B. J. d, Besten W., Famm K., Kruidenier L., Carter P. S., Harling J. D., Churcher I., Crews C. M. Nat. Chem. Bi-ol., 2015, 11(8): 611.

[11]

Dawson M. A., Kouzarides T., Huntly B. J. P. N. Engl. J. Med., 2012, 367(7): 647.

[12]

Arrowsmith C. H., Bountra C., Fish P. V., Lee K., Schapira M. Nat. Rev. Drug Discovery, 2012, 11(5): 384.

[13]

Chung C. W. Prog. Med. Chem., 2012, 51: 1.

[14]

Raina K., Lu J., Qian Y., Altieri M., Gordon D., Rossi A. M., Wang J., Chen X., Dong H., Siu K., Winkler J. D., Crew A. P., Crews C. M., Coleman K. G. Proc. Natl. Acad. Sci. USA, 2016, 113(26): 7124.

[15]

Chen L., Yap J. L., Yoshioka M., Lanning M. E., Fountain R. N., Raje M., Scheenstra J. A., Strovel J. W., Fletcher S. ACS Med. Chem. Lett., 2015, 6(7): 764.

[16]

Zhao L., Cao D., Chen T., Wang Y., Miao Z., Xu Y., Chen W., Wang X., Li Y., Du Z., Xiong B., Li J., Xu C., Zhang N., He J., Shen J. J. Med. Chem., 2013, 56(10): 3833.

[17]

Budin G., Yang K. S., Reiner T., Weissleder R. Angew. Chem. Int. Ed. Engl., 2011, 50(40): 9378.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/