Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide

Xianwei Fu , Yang Liu , Zhi Liu , Ning Dong , Tianyu Zhao , Dan Zhao , Gang Lian , Qilong Wang , Deliang Cui

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 95 -100.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 95 -100. DOI: 10.1007/s40242-018-7297-9
Article

Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide

Author information +
History +
PDF

Abstract

Although organic semiconductors have attracted extensive interest and been utilized to fabricate a variety of optoelectronic devices, their electrical transportation characteristics under high pressure have rarely been investigated. However, the weak intermolecular interaction of organic semiconductors endows them with a pressure-sensitive crystal structure and electrical transportation performance, especially the latter. Herein, a new pressure-sensitive transistor was fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. It was found that this transistor exhibited increasing resistance as the pressure gradually increased and that it eventually shut off under a pressure of 288 MPa. Such a characteristic makes this organic semiconductor a potential candidate for the use in the fabrication of pressure-sensitive switches and regulators. In addition, these results shed light on the electrical performance of flexible organic optoelectronic devices working under high pressure levels resulted from the bending force.

Keywords

Pressure-sensitive transistor / Organic semiconductor / High-pressure / Thermal stability

Cite this article

Download citation ▾
Xianwei Fu, Yang Liu, Zhi Liu, Ning Dong, Tianyu Zhao, Dan Zhao, Gang Lian, Qilong Wang, Deliang Cui. Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. Chemical Research in Chinese Universities, 2018, 34(1): 95-100 DOI:10.1007/s40242-018-7297-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H., Liu H., Zhang Z., Hu K., Fang X. Adv. Mater., 2016, 28: 403.

[2]

Bittle E. G., Basham J. I., Jackson T. N., Jurchescu O. D., Gundlach D. J. Nat. Commun., 2016, 7: 10908.

[3]

Leonardi F., Casalini S., Zhang Q., Galindo S., Gutiérrez D., Mas-Torrent M. Adv. Mater., 2016, 28: 10311.

[4]

Chen Y., Li C., Xu X., Liu M., He Y., Murtaza I., Zhang D., Yao C., Wang Y., Meng H. ACS Appl. Mater. Interfaces, 2017, 9: 7305.

[5]

Zhang J., Wen Y., Li Q., Han Z., Fu Z., Cao W. Chem. Res. Chinese Univerities, 2013, 29(5): 998.

[6]

Kim J. H., Wood S., Park J. B., Wade J., Song M., Yoon S. C., Jung I. H., Kim J. S., Hwang D. H. Adv. Funct. Mater., 2016, 26: 1517.

[7]

Oh Y., Lim J. W., Kim J. G., Wang H., Kang B. H., Park Y. W., Kim H., Jang Y. J., Kim J., Kim D. H., Ju B. K. ACS Nano., 2016, 10: 10143.

[8]

Hong M., Lee Y. J., Lee E. K., Yu H., Kim H., Lee J. U., Lee W., Oh J. H. Adv. Funct. Mater., 2016, 26: 1445.

[9]

Tsizh B. R., Aksimentyeva O. I., Chokhan M. I., Portak Y. R. Mol. Cryst. Liq. Cryst., 2011, 535: 220.

[10]

Han S., Zhuang X., Shi W., Yang X., Li L., Yu J. Sens. Actuators B: Chem., 2016, 225: 10.

[11]

Laquindanum J. G., Katz H. E., Dodabalapur A., Lovinger A. J. J. Am. Chem. Soc., 1996, 118: 11331.

[12]

Gupta R. K., Singh R. A. Mater. Chem. Phys., 2004, 86: 279.

[13]

Pivovar A. M., Curtis J. E., Leao J. B., Chesterfield R. J., Frisbie C. D. Chem. Phys., 2006, 325: 138.

[14]

Loi M. A., Bongiovanni G., Mura A., Cai Q., Martin C., Chandrasekhar H. R., Chandrasekhar M., Grauper W., Garnier F. Synth. Metals., 2001, 116: 311.

[15]

Guha S., Knaapila M., Moghe D., Konôpková Z., Fritsch M. T. M., Scherf U. J. Polym. Sci. Part B: Polym. Phys., 2014, 52: 1014.

[16]

Wang Q., Zhang H., Zhang Y., Liu C., Han Y., Ma Y., Gao C. High Pressure Res., 2014, 34: 355.

[17]

Mailman A., Leitch A. A., Yong W., Steven E., Winter S. M., Claridge R. C., Assoud A., Tse J. S., Desgreniers S., Secco R. A., Oakley R. T. J. Am. Chem. Soc., 2017, 139: 2180.

[18]

Beales T. P., Quereshi S., Willis M. R. Physica Status Solid A, 1989, 114: 299.

[19]

Taniguchi H., Miyashita M., Uchiyama K., Satoh K., Môri N., Oka-moto H., Miyagawa K., Kanoda K., Heda M., Uwatoko Y. J. Phys. Soc. Jpn., 2003, 72: 468.

[20]

Sakai K., Okada Y., Kitaoka S., Tsurumi J., Ohishi Y., Fujiwara A., Takimiya K., Takeya J. Phys. Rev. Lett., 2013, 110: 096603.

[21]

Rang Z. M., Nathan I., Ruden P. P., Chesterfield R., Frisbie C. D. Appl. Phys. Lett., 2004, 85: 5760.

[22]

Okada Y., Sakai K., Uemura T., Nakazawa Y., Takeya J. Phys. Rev. B., 2011, 84: 245308.

[23]

Chen X. M., Cai J. W. Single-Crystal Structural Analysis. Principles and Practices, Science Press, Beijing, 2003, 1: 14.

[24]

Freytag M., Jones P. G., Ahrens B., Fischer A. K. New J. Chem., 1999, 23: 1137.

[25]

Zhao D., Liu Z., Shi L. Q., Yu W. T., Cui D. L., Tao X. T. Z. Kristal-logr. NCS, 2012, 227: 245.

[26]

Russell J. H., Wallwork S. C. Acta Cryst., 1971, B27: 2473.

[27]

Eckert N. A., Bauer J. K., Connic W. Acta Cryst., 1999, C55: IUC9900101.

[28]

Cao L., Liu Z., Wang T., Dai H., Zhang L., Tao X., Cui D. Cryst-EngComm., 2012, 14: 5795.

[29]

Wu H., Bai F., Sun Z., Haddad R. E., Boye D. M., Wang Z., Fan H. Angew. Chem. Int. Ed., 2010, 49: 8431.

[30]

Wu H., Wang Z., Fan H. J. Am. Chem. Soc., 2014, 136: 7634.

[31]

Grimsdale A. C., Müllen K. Angew. Chem. Int. Ed., 2005, 44: 5592.

[32]

Okamoto T., Nakahara K., Saeki A., Seki S., Oh J. H., Akkerman H. B., Bao Z., Matsuo Y. Chem. Mater., 2011, 23: 1646.

[33]

Hoeben F. J., Jonkheijm P., Meijer E. W., Schenning A. P. Chem. Rev., 2005, 105: 1491.

[34]

Liu G., Liu J., Liu Y., Tao X. J. Am. Chem. Soc., 2013, 136: 590.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/