Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide
Xianwei Fu , Yang Liu , Zhi Liu , Ning Dong , Tianyu Zhao , Dan Zhao , Gang Lian , Qilong Wang , Deliang Cui
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 95 -100.
Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide
Although organic semiconductors have attracted extensive interest and been utilized to fabricate a variety of optoelectronic devices, their electrical transportation characteristics under high pressure have rarely been investigated. However, the weak intermolecular interaction of organic semiconductors endows them with a pressure-sensitive crystal structure and electrical transportation performance, especially the latter. Herein, a new pressure-sensitive transistor was fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. It was found that this transistor exhibited increasing resistance as the pressure gradually increased and that it eventually shut off under a pressure of 288 MPa. Such a characteristic makes this organic semiconductor a potential candidate for the use in the fabrication of pressure-sensitive switches and regulators. In addition, these results shed light on the electrical performance of flexible organic optoelectronic devices working under high pressure levels resulted from the bending force.
Pressure-sensitive transistor / Organic semiconductor / High-pressure / Thermal stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
/
| 〈 |
|
〉 |